Abstract acceleration of general linear loops

Bertrand Jeannet, P. Schrammel, S. Sankaranarayanan
{"title":"Abstract acceleration of general linear loops","authors":"Bertrand Jeannet, P. Schrammel, S. Sankaranarayanan","doi":"10.1145/2535838.2535843","DOIUrl":null,"url":null,"abstract":"We present abstract acceleration techniques for computing loop invariants for numerical programs with linear assignments and conditionals. Whereas abstract interpretation techniques typically over-approximate the set of reachable states iteratively, abstract acceleration captures the effect of the loop with a single, non-iterative transfer function applied to the initial states at the loop head. In contrast to previous acceleration techniques, our approach applies to any linear loop without restrictions. Its novelty lies in the use of the Jordan normal form decomposition of the loop body to derive symbolic expressions for the entries of the matrix modeling the effect of η ≥ Ο iterations of the loop. The entries of such a matrix depend on η through complex polynomial, exponential and trigonometric functions. Therefore, we introduces an abstract domain for matrices that captures the linear inequality relations between these complex expressions. This results in an abstract matrix for describing the fixpoint semantics of the loop. Our approach integrates smoothly into standard abstract interpreters and can handle programs with nested loops and loops containing conditional branches. We evaluate it over small but complex loops that are commonly found in control software, comparing it with other tools for computing linear loop invariants. The loops in our benchmarks typically exhibit polynomial, exponential and oscillatory behaviors that present challenges to existing approaches. Our approach finds non-trivial invariants to prove useful bounds on the values of variables for such loops, clearly outperforming the existing approaches in terms of precision while exhibiting good performance.","PeriodicalId":20683,"journal":{"name":"Proceedings of the 41st ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages","volume":"23 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2013-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"51","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 41st ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2535838.2535843","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 51

Abstract

We present abstract acceleration techniques for computing loop invariants for numerical programs with linear assignments and conditionals. Whereas abstract interpretation techniques typically over-approximate the set of reachable states iteratively, abstract acceleration captures the effect of the loop with a single, non-iterative transfer function applied to the initial states at the loop head. In contrast to previous acceleration techniques, our approach applies to any linear loop without restrictions. Its novelty lies in the use of the Jordan normal form decomposition of the loop body to derive symbolic expressions for the entries of the matrix modeling the effect of η ≥ Ο iterations of the loop. The entries of such a matrix depend on η through complex polynomial, exponential and trigonometric functions. Therefore, we introduces an abstract domain for matrices that captures the linear inequality relations between these complex expressions. This results in an abstract matrix for describing the fixpoint semantics of the loop. Our approach integrates smoothly into standard abstract interpreters and can handle programs with nested loops and loops containing conditional branches. We evaluate it over small but complex loops that are commonly found in control software, comparing it with other tools for computing linear loop invariants. The loops in our benchmarks typically exhibit polynomial, exponential and oscillatory behaviors that present challenges to existing approaches. Our approach finds non-trivial invariants to prove useful bounds on the values of variables for such loops, clearly outperforming the existing approaches in terms of precision while exhibiting good performance.
一般线性回路的抽象加速度
提出了一种用于计算具有线性赋值和条件的数值程序的循环不变量的抽象加速技术。抽象解释技术通常会迭代地过度逼近可达状态集,而抽象加速则通过将单个非迭代传递函数应用于环路头部的初始状态来捕获环路的效果。与以前的加速技术相比,我们的方法适用于任何线性环路,没有限制。它的新颖之处在于利用环体的Jordan范式分解,推导出矩阵项的符号表达式,以模拟η≥Ο循环迭代的效果。这种矩阵的项通过复多项式、指数函数和三角函数依赖于η。因此,我们引入了一个抽象的矩阵定义域,它捕捉了这些复杂表达式之间的线性不等式关系。这就产生了一个用于描述循环的不动点语义的抽象矩阵。我们的方法可以顺利地集成到标准的抽象解释器中,并且可以处理带有嵌套循环和包含条件分支的循环的程序。我们对控制软件中常见的小而复杂的循环进行评估,并将其与计算线性循环不变量的其他工具进行比较。我们的基准测试中的循环通常表现出多项式、指数和振荡行为,这对现有方法提出了挑战。我们的方法找到了非平凡的不变量来证明这种循环的变量值的有用界限,在精度方面明显优于现有的方法,同时表现出良好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信