CCR KVA Relief Through CVA: A Regression-Based Monte Carlo Approach

Christoph M. Puetter, Stefano Renzitti, Allan Cowan
{"title":"CCR KVA Relief Through CVA: A Regression-Based Monte Carlo Approach","authors":"Christoph M. Puetter, Stefano Renzitti, Allan Cowan","doi":"10.2139/ssrn.3127856","DOIUrl":null,"url":null,"abstract":"We present and examine, by example of a USD interest rate swap and a EUR/USD cross-currency basis swap, a regression-based Monte Carlo approach to counterparty credit default risk (CCR) capital and CCR capital valuation adjustment (KVA) calculations [assuming the standardized approach to counterparty credit risk for exposure-at-default (SA-CCR EAD) and the internal ratings-based (IRB) approach for CCR risk weights]. This approach allows to incorporate the capital lowering effect of credit valuation adjustment (CVA) in an efficient manner, without having to resort to lengthy nested Monte Carlo simulations. We find that the regression-based Monte Carlo approach works well in most situations. In other situations, the accuracy of the approach is sensitively controlled by the choice of explanatory variables. We discuss in detail the conditions and underlying dynamics under which this happens. In computing and presenting a selection of numerical examples, we also explore the impact of dynamic CCR risk weights on CCR KVA, and compare regression-based CCR KVA results with CCR KVA results from nested Monte Carlo, alternative frequently used CCR KVA simplifications, and standardized CVA KVA.","PeriodicalId":11495,"journal":{"name":"Econometric Modeling: Capital Markets - Forecasting eJournal","volume":"27 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Econometric Modeling: Capital Markets - Forecasting eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3127856","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We present and examine, by example of a USD interest rate swap and a EUR/USD cross-currency basis swap, a regression-based Monte Carlo approach to counterparty credit default risk (CCR) capital and CCR capital valuation adjustment (KVA) calculations [assuming the standardized approach to counterparty credit risk for exposure-at-default (SA-CCR EAD) and the internal ratings-based (IRB) approach for CCR risk weights]. This approach allows to incorporate the capital lowering effect of credit valuation adjustment (CVA) in an efficient manner, without having to resort to lengthy nested Monte Carlo simulations. We find that the regression-based Monte Carlo approach works well in most situations. In other situations, the accuracy of the approach is sensitively controlled by the choice of explanatory variables. We discuss in detail the conditions and underlying dynamics under which this happens. In computing and presenting a selection of numerical examples, we also explore the impact of dynamic CCR risk weights on CCR KVA, and compare regression-based CCR KVA results with CCR KVA results from nested Monte Carlo, alternative frequently used CCR KVA simplifications, and standardized CVA KVA.
通过CVA缓解CCR KVA:一个基于回归的蒙特卡罗方法
通过美元利率掉期和欧元/美元交叉货币基差掉期的例子,我们提出并检验了一种基于回归的交易对手信用违约风险(CCR)资本和CCR资本估值调整(KVA)计算的蒙特卡洛方法[假设交易对手违约敞口信用风险的标准化方法(SA-CCR EAD)和基于内部评级(IRB)的CCR风险权重方法]。这种方法允许以一种有效的方式合并信用估值调整(CVA)的资本降低效果,而不必求助于冗长的嵌套蒙特卡罗模拟。我们发现基于回归的蒙特卡罗方法在大多数情况下都能很好地工作。在其他情况下,该方法的准确性受到解释变量选择的敏感控制。我们将详细讨论发生这种情况的条件和潜在动力。在计算和展示一系列数值示例时,我们还探讨了动态CCR风险权重对CCR KVA的影响,并将基于回归的CCR KVA结果与嵌套蒙特卡罗CCR KVA结果、替代常用CCR KVA简化结果和标准化CVA KVA结果进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信