M. Neugebauer, D. M. Juraschek, M. Savoini, P. Engeler, L. Boie, E. Abreu, N. Spaldin, S. Johnson
{"title":"Comparison of coherent phonon generation by electronic and ionic Raman scattering in \nLaAlO3","authors":"M. Neugebauer, D. M. Juraschek, M. Savoini, P. Engeler, L. Boie, E. Abreu, N. Spaldin, S. Johnson","doi":"10.1103/PHYSREVRESEARCH.3.013126","DOIUrl":null,"url":null,"abstract":"In ionic Raman scattering, infrared-active phonons mediate a scattering process that results in the creation or destruction of a Raman-active phonon. This mechanism relies on nonlinear interactions between phonons and has in recent years been associated with a variety of emergent lattice-driven phenomena in complex transition-metal oxides, but the underlying mechanism is often obscured by the presence of multiple coupled order parameters in play. Here, we use time-resolved spectroscopy to compare coherent phonons generated by ionic Raman scattering with those created by more conventional electronic Raman scattering on the nonmagnetic and non-strongly-correlated wide band-gap insulator LaAlO$_3$. We find that the oscillatory amplitude of the low-frequency Raman-active $E_g$ mode exhibits a sharp peak when we tune our pump frequency into resonance with the high-frequency infrared-active $E_u$ mode, consistent with first-principles calculations. Our results suggest that ionic Raman scattering can strongly dominate electronic Raman scattering in wide band-gap insulating materials. We also see evidence of competing scattering channels at fluences above 28~mJ/cm$^2$ that alter the measured amplitude of the coherent phonon response.","PeriodicalId":8467,"journal":{"name":"arXiv: Materials Science","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Materials Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/PHYSREVRESEARCH.3.013126","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
In ionic Raman scattering, infrared-active phonons mediate a scattering process that results in the creation or destruction of a Raman-active phonon. This mechanism relies on nonlinear interactions between phonons and has in recent years been associated with a variety of emergent lattice-driven phenomena in complex transition-metal oxides, but the underlying mechanism is often obscured by the presence of multiple coupled order parameters in play. Here, we use time-resolved spectroscopy to compare coherent phonons generated by ionic Raman scattering with those created by more conventional electronic Raman scattering on the nonmagnetic and non-strongly-correlated wide band-gap insulator LaAlO$_3$. We find that the oscillatory amplitude of the low-frequency Raman-active $E_g$ mode exhibits a sharp peak when we tune our pump frequency into resonance with the high-frequency infrared-active $E_u$ mode, consistent with first-principles calculations. Our results suggest that ionic Raman scattering can strongly dominate electronic Raman scattering in wide band-gap insulating materials. We also see evidence of competing scattering channels at fluences above 28~mJ/cm$^2$ that alter the measured amplitude of the coherent phonon response.