$\mu$-constant deformations of functions on an ICIS

IF 0.4 Q4 MATHEMATICS
R. S. Carvalho, B. Oréfice-Okamoto, J. N. Tomazella
{"title":"$\\mu$-constant deformations of functions on an ICIS","authors":"R. S. Carvalho, B. Oréfice-Okamoto, J. N. Tomazella","doi":"10.5427/jsing.2019.19i","DOIUrl":null,"url":null,"abstract":"We study deformations of holomorphic function germs $f:(X,0)\\to\\mathbb C$ where $(X,0)$ is an ICIS. We present conditions for these deformations to have constant Milnor number, Euler obstruction and Bruce-Roberts number.","PeriodicalId":44411,"journal":{"name":"Journal of Singularities","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2018-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Singularities","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5427/jsing.2019.19i","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

Abstract

We study deformations of holomorphic function germs $f:(X,0)\to\mathbb C$ where $(X,0)$ is an ICIS. We present conditions for these deformations to have constant Milnor number, Euler obstruction and Bruce-Roberts number.
$\mu$- ICIS上函数的常数变形
研究了全纯函数$f:(X,0)\到$ mathbb C$的变形,其中$(X,0)$是一个ICIS。给出了这些变形具有恒定的Milnor数、Euler阻塞数和Bruce-Roberts数的条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
28
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信