Bayesian model selection for multilevel mediation models

IF 1.4 3区 数学 Q2 STATISTICS & PROBABILITY
O. Ariyo, E. Lesaffre, G. Verbeke, M. Huisman, Judith Rijnhart, Martijn Heymans, J. Twisk
{"title":"Bayesian model selection for multilevel mediation models","authors":"O. Ariyo, E. Lesaffre, G. Verbeke, M. Huisman, Judith Rijnhart, Martijn Heymans, J. Twisk","doi":"10.1111/stan.12256","DOIUrl":null,"url":null,"abstract":"Mediation analysis is often used to explore the complex relationship between two variables through a third mediating variable. This paper aims to illustrate the performance of the deviance information criterion, the pseudo‐Bayes factor, and the Watanabe–Akaike information criterion in selecting the appropriate multilevel mediation model. Our focus will be on comparing the conditional criteria (given random effects) versus the marginal criteria (averaged over random effects) in this respect. Most of the previous work on the multilevel mediation models fails to report the poor behavior of the conditional criteria. We demonstrate here the superiority of the marginal version of the selection criteria over their conditional counterpart in the mediated longitudinal settings through simulation studies and via an application to data from the Longitudinal Aging Study of the Amsterdam study. In addition, we demonstrate the usefulness of our self‐written R function for multilevel mediation models.","PeriodicalId":51178,"journal":{"name":"Statistica Neerlandica","volume":"49 1","pages":"219 - 235"},"PeriodicalIF":1.4000,"publicationDate":"2021-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistica Neerlandica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1111/stan.12256","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 2

Abstract

Mediation analysis is often used to explore the complex relationship between two variables through a third mediating variable. This paper aims to illustrate the performance of the deviance information criterion, the pseudo‐Bayes factor, and the Watanabe–Akaike information criterion in selecting the appropriate multilevel mediation model. Our focus will be on comparing the conditional criteria (given random effects) versus the marginal criteria (averaged over random effects) in this respect. Most of the previous work on the multilevel mediation models fails to report the poor behavior of the conditional criteria. We demonstrate here the superiority of the marginal version of the selection criteria over their conditional counterpart in the mediated longitudinal settings through simulation studies and via an application to data from the Longitudinal Aging Study of the Amsterdam study. In addition, we demonstrate the usefulness of our self‐written R function for multilevel mediation models.
多层次中介模型的贝叶斯模型选择
中介分析通常通过第三个中介变量来探索两个变量之间的复杂关系。本文旨在说明偏差信息准则、伪贝叶斯因子和Watanabe-Akaike信息准则在选择合适的多层次中介模型中的作用。在这方面,我们的重点是比较条件标准(给定随机效应)和边际标准(随机效应的平均值)。以前关于多层中介模型的大多数工作都没有报告条件标准的不良行为。通过模拟研究和阿姆斯特丹纵向老龄化研究数据的应用,我们在这里证明了选择标准的边缘版本在中介纵向设置中优于条件对应物。此外,我们证明了我们自己编写的R函数对多层中介模型的有用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Statistica Neerlandica
Statistica Neerlandica 数学-统计学与概率论
CiteScore
2.60
自引率
6.70%
发文量
26
审稿时长
>12 weeks
期刊介绍: Statistica Neerlandica has been the journal of the Netherlands Society for Statistics and Operations Research since 1946. It covers all areas of statistics, from theoretical to applied, with a special emphasis on mathematical statistics, statistics for the behavioural sciences and biostatistics. This wide scope is reflected by the expertise of the journal’s editors representing these areas. The diverse editorial board is committed to a fast and fair reviewing process, and will judge submissions on quality, correctness, relevance and originality. Statistica Neerlandica encourages transparency and reproducibility, and offers online resources to make data, code, simulation results and other additional materials publicly available.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信