{"title":"Novel Isolated Bidirectional Integrated Dual Three-Phase Active Bridge (D3AB) PFC Rectifier","authors":"F. Krismer, E. Hatipoglu, J. Kolar","doi":"10.23919/IPEC.2018.8507362","DOIUrl":null,"url":null,"abstract":"This Paper proposes a novel Dual Three-Phase Active Bridge (D3AB) PFC rectifier topology for a 400 V dc distribution system, which features galvanic isolation, bidirectional power conversion capability, a high level of component integration, and can be dimensioned with respect to high efficiency. In the course of a comprehensive and in-depth analytical investigation, the working principle of the D3AB PFC rectifier is described in order to enable converter modelling and the derivation of mathematical expressions and limitations needed for converter design and optimization. The developed converter models are verified by means of circuit simulations. An overall optimization of a system with 400 V line-to-line input voltage, 400 V dc output, and Pout = 8 kW rated power with respect to efficiency and power density reveals the feasibility of a full-load efficiency of 98.1% and a power density of 4 kW/dm3 if SiC MOSFETs are used. The finally presented design is found to achieve efficiencies greater than 98 % for Pout > 1.7 kW.","PeriodicalId":6610,"journal":{"name":"2018 International Power Electronics Conference (IPEC-Niigata 2018 -ECCE Asia)","volume":"2 1","pages":"3805-3812"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Power Electronics Conference (IPEC-Niigata 2018 -ECCE Asia)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/IPEC.2018.8507362","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14
Abstract
This Paper proposes a novel Dual Three-Phase Active Bridge (D3AB) PFC rectifier topology for a 400 V dc distribution system, which features galvanic isolation, bidirectional power conversion capability, a high level of component integration, and can be dimensioned with respect to high efficiency. In the course of a comprehensive and in-depth analytical investigation, the working principle of the D3AB PFC rectifier is described in order to enable converter modelling and the derivation of mathematical expressions and limitations needed for converter design and optimization. The developed converter models are verified by means of circuit simulations. An overall optimization of a system with 400 V line-to-line input voltage, 400 V dc output, and Pout = 8 kW rated power with respect to efficiency and power density reveals the feasibility of a full-load efficiency of 98.1% and a power density of 4 kW/dm3 if SiC MOSFETs are used. The finally presented design is found to achieve efficiencies greater than 98 % for Pout > 1.7 kW.