Neuralized Mouse Embryonic Stem Cells Develop Neural Rosette-Like Structures in Response to Retinoic Acid and Produce Teratomas in the Brains of Syngeneic Mice

Cheryl L Dunham, M. Kirk
{"title":"Neuralized Mouse Embryonic Stem Cells Develop Neural Rosette-Like Structures in Response to Retinoic Acid and Produce Teratomas in the Brains of Syngeneic Mice","authors":"Cheryl L Dunham, M. Kirk","doi":"10.3968/J.ANS.1715787020130604.2838","DOIUrl":null,"url":null,"abstract":"Several induction protocols can direct differentiation of mouse embryonic stem cells (ESCs) to become neural cells. The B5 and B6 mouse ESC lines display different growth patterns in vitro, and when grown as adherent cultures, the B6 ESCs proliferated at a significantly lower rate than B5 ESCs. Remarkably, after a neural induction protocol that includes removal of LIF and addition of retinoic acid (RA), mature B6 embryoid bodies (EBs) displayed a unique neural rosette-like morphology. On Day 8 of neural induction, B6 EBs revealed mature neuronal markers localized primarily to cells in the center of the EBs and glial markers expressed both in centrally and peripherally located cells. In contrast to B5 cells, when neuralized Day 8 B6 EB cells were dissociated and transplanted into the left striatum of syngeneic C57BL/6 mouse brains, teratomas formed. In addition, teratomas established from undifferentiated B6 cells grew more rapidly and achieved larger volumes when compared to those produced by Day 8, neuralized B6 EBs. The slow growth rate of B6 cells in vitro may have contributed to incomplete neuralization, formation of neural rosette-like structures, and a propensity to form teratomas.","PeriodicalId":7348,"journal":{"name":"Advances in Natural Science","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2013-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Natural Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3968/J.ANS.1715787020130604.2838","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Several induction protocols can direct differentiation of mouse embryonic stem cells (ESCs) to become neural cells. The B5 and B6 mouse ESC lines display different growth patterns in vitro, and when grown as adherent cultures, the B6 ESCs proliferated at a significantly lower rate than B5 ESCs. Remarkably, after a neural induction protocol that includes removal of LIF and addition of retinoic acid (RA), mature B6 embryoid bodies (EBs) displayed a unique neural rosette-like morphology. On Day 8 of neural induction, B6 EBs revealed mature neuronal markers localized primarily to cells in the center of the EBs and glial markers expressed both in centrally and peripherally located cells. In contrast to B5 cells, when neuralized Day 8 B6 EB cells were dissociated and transplanted into the left striatum of syngeneic C57BL/6 mouse brains, teratomas formed. In addition, teratomas established from undifferentiated B6 cells grew more rapidly and achieved larger volumes when compared to those produced by Day 8, neuralized B6 EBs. The slow growth rate of B6 cells in vitro may have contributed to incomplete neuralization, formation of neural rosette-like structures, and a propensity to form teratomas.
神经化小鼠胚胎干细胞响应维甲酸形成神经玫瑰花样结构并在同基因小鼠大脑中产生畸胎瘤
几种诱导方法可以引导小鼠胚胎干细胞(ESCs)向神经细胞分化。B5和B6小鼠ESC系在体外培养中表现出不同的生长模式,在贴壁培养时,B6 ESC的增殖率明显低于B5 ESC。值得注意的是,在去除LIF和添加维甲酸(RA)的神经诱导方案后,成熟的B6胚状体(EBs)显示出独特的神经玫瑰花状形态。在神经诱导的第8天,B6 EBs显示主要定位于EBs中心细胞的成熟神经元标记物和中枢和周围细胞中表达的胶质标记物。与B5细胞相反,当神经化第8天B6 EB细胞分离并移植到同系C57BL/6小鼠大脑左侧纹状体时,形成畸胎瘤。此外,与第8天神经化的B6细胞相比,未分化的B6细胞形成的畸胎瘤生长更快,体积更大。体外培养的B6细胞生长速度缓慢可能导致神经化不完全,形成神经玫瑰花样结构,并容易形成畸胎瘤。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信