Ring of Endomorphisms and Modules over a Ring

IF 1 Q1 MATHEMATICS
Yasushige Watase
{"title":"Ring of Endomorphisms and Modules over a Ring","authors":"Yasushige Watase","doi":"10.2478/forma-2022-0016","DOIUrl":null,"url":null,"abstract":"Summary We formalize in the Mizar system [3], [4] some basic properties on left module over a ring such as constructing a module via a ring of endomorphism of an abelian group and the set of all homomorphisms of modules form a module [1] along with Ch. 2 set. 1 of [2]. The formalized items are shown in the below list with notations: Mab for an Abelian group with a suffix “ab” and M without a suffix is used for left modules over a ring. 1. The endomorphism ring of an abelian group denoted by End(Mab). 2. A pair of an Abelian group Mab and a ring homomorphism R→ρ R\\mathop \\to \\limits^\\rho End (Mab) determines a left R-module, formalized as a function AbGrLMod(Mab, ρ) in the article. 3. The set of all functions from M to N form R-module and denoted by Func_ModR(M, N). 4. The set R-module homomorphisms of M to N, denoted by HomR(M, N), forms R-module. 5. A formal proof of HomR(¯R, M) ≅M is given, where the ¯R denotes the regular representation of R, i.e. we regard R itself as a left R-module. 6. A formal proof of AbGrLMod(M′ab, ρ′) ≅ M where M′ab is an abelian group obtained by removing the scalar multiplication from M, and ρ′ is obtained by currying the scalar multiplication of M. The removal of the multiplication from M has been done by the forgettable functor defined as AbGr in the article.","PeriodicalId":42667,"journal":{"name":"Formalized Mathematics","volume":"164 1","pages":"211 - 221"},"PeriodicalIF":1.0000,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Formalized Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/forma-2022-0016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Summary We formalize in the Mizar system [3], [4] some basic properties on left module over a ring such as constructing a module via a ring of endomorphism of an abelian group and the set of all homomorphisms of modules form a module [1] along with Ch. 2 set. 1 of [2]. The formalized items are shown in the below list with notations: Mab for an Abelian group with a suffix “ab” and M without a suffix is used for left modules over a ring. 1. The endomorphism ring of an abelian group denoted by End(Mab). 2. A pair of an Abelian group Mab and a ring homomorphism R→ρ R\mathop \to \limits^\rho End (Mab) determines a left R-module, formalized as a function AbGrLMod(Mab, ρ) in the article. 3. The set of all functions from M to N form R-module and denoted by Func_ModR(M, N). 4. The set R-module homomorphisms of M to N, denoted by HomR(M, N), forms R-module. 5. A formal proof of HomR(¯R, M) ≅M is given, where the ¯R denotes the regular representation of R, i.e. we regard R itself as a left R-module. 6. A formal proof of AbGrLMod(M′ab, ρ′) ≅ M where M′ab is an abelian group obtained by removing the scalar multiplication from M, and ρ′ is obtained by currying the scalar multiplication of M. The removal of the multiplication from M has been done by the forgettable functor defined as AbGr in the article.
环上的自同态环和模
在Mizar系统[3],[4]中,我们形式化了环上左模的一些基本性质,如通过一个阿贝尔群的自同态环构造一个模,以及模的所有同态的集合与Ch. 2集合构成一个模[1]。[2]中的1。形式化的项如下表所示,并附有注释:Mab用于带后缀“ab”的阿贝尔群,M用于不带后缀的环上的左模块。1. 用End(Mab)表示的阿贝尔群的自同态环。2. 一个阿贝尔群Mab和一个环同态R→ρ R \mathop\to\limits ^ \rho端点(Mab)决定了一个左R模,在文章中形式化为函数AbGrLMod(Mab, ρ)。3.从M到N的所有函数的集合形成r模,记为Func_ModR(M, N)。M到N的r模同态集合,记为HomR(M, N),构成r模。5. 给出了HomR(¯R, M) = M的一个形式证明,其中¯R表示R的正则表示,即我们将R本身视为一个左R模。6. AbGrLMod(M ' ab, ρ ') = M的形式化证明,其中M ' ab是一个阿贝尔群,是通过去掉M的标量乘法得到的,ρ '是通过对M的标量乘法进行套取得到的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Formalized Mathematics
Formalized Mathematics MATHEMATICS-
自引率
0.00%
发文量
0
审稿时长
10 weeks
期刊介绍: Formalized Mathematics is to be issued quarterly and publishes papers which are abstracts of Mizar articles contributed to the Mizar Mathematical Library (MML) - the basis of a knowledge management system for mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信