An outlier detection method based on cluster pruning

R. Pamula, J. Deka, Sukumar Nandi
{"title":"An outlier detection method based on cluster pruning","authors":"R. Pamula, J. Deka, Sukumar Nandi","doi":"10.1109/ICBIM.2014.6970955","DOIUrl":null,"url":null,"abstract":"Outlier detection has a wide range of applications. In this paper we present a new method for detecting outliers, focused on reducing the number of computations. Our method operates on two phases and uses one pruning strategy. Objective is to remove the points which are considered to be inliers. In the first phase a clustering algorithm is applied to partition the data into clusters and make an estimate to prune the clusters, in the second phase we apply a outlier score function to dictate the outliers. The experimental results using real datasets demonstrate the superiority of our method over existing outlier detection method.","PeriodicalId":6549,"journal":{"name":"2014 2nd International Conference on Business and Information Management (ICBIM)","volume":"1 1","pages":"138-141"},"PeriodicalIF":0.0000,"publicationDate":"2014-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 2nd International Conference on Business and Information Management (ICBIM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICBIM.2014.6970955","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Outlier detection has a wide range of applications. In this paper we present a new method for detecting outliers, focused on reducing the number of computations. Our method operates on two phases and uses one pruning strategy. Objective is to remove the points which are considered to be inliers. In the first phase a clustering algorithm is applied to partition the data into clusters and make an estimate to prune the clusters, in the second phase we apply a outlier score function to dictate the outliers. The experimental results using real datasets demonstrate the superiority of our method over existing outlier detection method.
一种基于聚类修剪的离群点检测方法
异常值检测具有广泛的应用。在本文中,我们提出了一种新的检测异常值的方法,重点是减少计算量。我们的方法操作在两个阶段,并使用一个修剪策略。目的是去除被认为是内线的点。在第一阶段,应用聚类算法将数据划分为簇并进行估计以修剪簇,在第二阶段,我们应用离群值分数函数来指示离群值。实际数据集的实验结果表明,该方法优于现有的离群点检测方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信