Elastic registration of medical images using radial basis functions with compact support

M. Fornefett, K. Rohr, H. Stiehl
{"title":"Elastic registration of medical images using radial basis functions with compact support","authors":"M. Fornefett, K. Rohr, H. Stiehl","doi":"10.1109/CVPR.1999.786970","DOIUrl":null,"url":null,"abstract":"We introduce radial basis functions with compact support for elastic registration of medical images. With these basis functions the influence of a landmark on the registration result is limited to a circle in 2D and, respectively, to a sphere in 3D. Therefore, the registration can be locally constrained which especially allows to deal with rather local changes in medical images due to, e.g., tumor resection. An important property of the used RBFs is that they are positive definite. Thus, the solvability of the resulting system of equations is always guaranteed. We demonstrate our approach for synthetic as well as for 2D and 3D tomographic images.","PeriodicalId":20644,"journal":{"name":"Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149)","volume":"10 1","pages":"402-407 Vol. 1"},"PeriodicalIF":0.0000,"publicationDate":"1999-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"78","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.1999.786970","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 78

Abstract

We introduce radial basis functions with compact support for elastic registration of medical images. With these basis functions the influence of a landmark on the registration result is limited to a circle in 2D and, respectively, to a sphere in 3D. Therefore, the registration can be locally constrained which especially allows to deal with rather local changes in medical images due to, e.g., tumor resection. An important property of the used RBFs is that they are positive definite. Thus, the solvability of the resulting system of equations is always guaranteed. We demonstrate our approach for synthetic as well as for 2D and 3D tomographic images.
基于紧支撑径向基函数的医学图像弹性配准
引入具有紧凑支持的径向基函数用于医学图像的弹性配准。利用这些基函数,地标对配准结果的影响分别局限于二维的圆和三维的球体。因此,配准可以局部约束,这尤其允许处理由于肿瘤切除等原因导致的医学图像的局部变化。所使用的rbf的一个重要性质是它们是正定的。因此,所得到的方程组的可解性总是得到保证的。我们展示了我们的方法合成以及二维和三维断层成像图像。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信