{"title":"Signed Product Cordial of the Sum and Union of Two Fourth Power of Paths and Cycles","authors":"S. Nada, A. Elrayes, A. Elrokh, A. Rabie","doi":"10.11648/J.MLR.20190404.11","DOIUrl":null,"url":null,"abstract":"A simple graph is said to be signed product cordial if it admits ±1 labeling that satisfies certain conditions. Our aim in this paper is to contribute some new results on signed product cordial labeling and present necessary and sufficient conditions for signed product cordial of the sum and union of two fourth power of paths. We also study the signed product cordiality of the sum and union of fourth power cycles The residue classes modulo 4 are accustomed to find suitable labelings for each class to achieve our task. We have shown that the union and the join of any two fourth power of paths are always signed product cordial. Howover, the join and union of fourth power of cycles are only signed codial with some expectional situations.","PeriodicalId":75238,"journal":{"name":"Transactions on machine learning research","volume":"59 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions on machine learning research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11648/J.MLR.20190404.11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
A simple graph is said to be signed product cordial if it admits ±1 labeling that satisfies certain conditions. Our aim in this paper is to contribute some new results on signed product cordial labeling and present necessary and sufficient conditions for signed product cordial of the sum and union of two fourth power of paths. We also study the signed product cordiality of the sum and union of fourth power cycles The residue classes modulo 4 are accustomed to find suitable labelings for each class to achieve our task. We have shown that the union and the join of any two fourth power of paths are always signed product cordial. Howover, the join and union of fourth power of cycles are only signed codial with some expectional situations.