SPOCK @ Causal News Corpus 2022: Cause-Effect-Signal Span Detection Using Span-Based and Sequence Tagging Models

Anik Saha, Alex Gittens, Jian Ni, Oktie Hassanzadeh, B. Yener, Kavitha Srinivas
{"title":"SPOCK @ Causal News Corpus 2022: Cause-Effect-Signal Span Detection Using Span-Based and Sequence Tagging Models","authors":"Anik Saha, Alex Gittens, Jian Ni, Oktie Hassanzadeh, B. Yener, Kavitha Srinivas","doi":"10.18653/v1/2022.case-1.18","DOIUrl":null,"url":null,"abstract":"Understanding causal relationship is an importance part of natural language processing. We address the causal information extraction problem with different neural models built on top of pre-trained transformer-based language models for identifying Cause, Effect and Signal spans, from news data sets. We use the Causal News Corpus subtask 2 training data set to train span-based and sequence tagging models. Our span-based model based on pre-trained BERT base weights achieves an F1 score of 47.48 on the test set with an accuracy score of 36.87 and obtained 3rd place in the Causal News Corpus 2022 shared task.","PeriodicalId":80307,"journal":{"name":"The Case manager","volume":"1 1","pages":"133-137"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Case manager","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/2022.case-1.18","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Understanding causal relationship is an importance part of natural language processing. We address the causal information extraction problem with different neural models built on top of pre-trained transformer-based language models for identifying Cause, Effect and Signal spans, from news data sets. We use the Causal News Corpus subtask 2 training data set to train span-based and sequence tagging models. Our span-based model based on pre-trained BERT base weights achieves an F1 score of 47.48 on the test set with an accuracy score of 36.87 and obtained 3rd place in the Causal News Corpus 2022 shared task.
SPOCK @因果新闻语料库2022:使用基于跨度和序列标记模型的因果信号跨度检测
理解因果关系是自然语言处理的重要组成部分。我们使用不同的神经模型来解决因果信息提取问题,这些模型建立在预训练的基于变压器的语言模型之上,用于从新闻数据集中识别原因、效果和信号跨度。我们使用因果新闻语料库子任务2训练数据集来训练基于跨度的和序列标记模型。我们基于预训练BERT基权的基于跨度的模型在测试集上获得了47.48的F1分数,准确率为36.87,在因果新闻语料库2022共享任务中获得了第三名。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信