Leveraging million-scale Non von Neumann computations for accelerated Machine Learning and High Performance Computing

L. Daudet
{"title":"Leveraging million-scale Non von Neumann computations for accelerated Machine Learning and High Performance Computing","authors":"L. Daudet","doi":"10.1109/PN52152.2021.9597985","DOIUrl":null,"url":null,"abstract":"Current large-scale computations, for instance in High Performance Computing or in the training of massive Machine Learning models, often suffer from the “memory bottleneck”, especially when dealing with high-dimensional data. Here, we present a new non-von Neumann photonic hardware, leveraging multiple light scattering. Optical Processing Units can be seamlessly integrated into a variety of hybrid photonics / silicon pipelines implementing state-of-the-art Machine Learning or High Performance Computing algorithms. They offer a credible pathway towards a new generation of large-scale computing, both scalable and sustainable.","PeriodicalId":6789,"journal":{"name":"2021 Photonics North (PN)","volume":"9 1 1","pages":"1-1"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 Photonics North (PN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PN52152.2021.9597985","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Current large-scale computations, for instance in High Performance Computing or in the training of massive Machine Learning models, often suffer from the “memory bottleneck”, especially when dealing with high-dimensional data. Here, we present a new non-von Neumann photonic hardware, leveraging multiple light scattering. Optical Processing Units can be seamlessly integrated into a variety of hybrid photonics / silicon pipelines implementing state-of-the-art Machine Learning or High Performance Computing algorithms. They offer a credible pathway towards a new generation of large-scale computing, both scalable and sustainable.
利用百万规模的非冯诺依曼计算加速机器学习和高性能计算
当前的大规模计算,例如在高性能计算或大规模机器学习模型的训练中,经常受到“内存瓶颈”的困扰,特别是在处理高维数据时。在这里,我们提出了一种新的非冯·诺伊曼光子硬件,利用多重光散射。光学处理单元可以无缝集成到各种混合光子/硅管道中,实现最先进的机器学习或高性能计算算法。它们为新一代大规模计算提供了一条可靠的途径,既可扩展又可持续。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信