Studying the Performance of Cognitive Models in Time Series Forecasting

A. B. S. Neto, T. Ferreira, M. D. C. M. Batista, P. Firmino
{"title":"Studying the Performance of Cognitive Models in Time Series Forecasting","authors":"A. B. S. Neto, T. Ferreira, M. D. C. M. Batista, P. Firmino","doi":"10.22456/2175-2745.96181","DOIUrl":null,"url":null,"abstract":"Cognitive models have been paramount for modeling phenomena for which empirical data are unavailable, scarce, or only partially relevant. These approaches are based on methods dedicated to preparing experts and then to elicit their opinions about the variables that describe the phenomena under study. In time series forecasting exercises, elicitation processes seek to obtain accurate estimates, overcoming human heuristic biases, while being less time consuming. This paper aims to compare the performance of cognitive and mathematical time series predictors, regarding accuracy. The results are based on the comparison of predictors of the cognitive and mathematical models for several time series from the M3-Competition. From the results, one can see that cognitive models are, at least, as accurate as ARIMA models predictions.","PeriodicalId":82472,"journal":{"name":"Research initiative, treatment action : RITA","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research initiative, treatment action : RITA","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22456/2175-2745.96181","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Cognitive models have been paramount for modeling phenomena for which empirical data are unavailable, scarce, or only partially relevant. These approaches are based on methods dedicated to preparing experts and then to elicit their opinions about the variables that describe the phenomena under study. In time series forecasting exercises, elicitation processes seek to obtain accurate estimates, overcoming human heuristic biases, while being less time consuming. This paper aims to compare the performance of cognitive and mathematical time series predictors, regarding accuracy. The results are based on the comparison of predictors of the cognitive and mathematical models for several time series from the M3-Competition. From the results, one can see that cognitive models are, at least, as accurate as ARIMA models predictions.
认知模型在时间序列预测中的性能研究
对于经验数据不可用、稀缺或仅部分相关的现象,认知模型是至关重要的。这些方法是基于专门为专家准备的方法,然后引出他们对描述正在研究的现象的变量的意见。在时间序列预测练习中,启发过程寻求获得准确的估计,克服人类的启发式偏见,同时减少时间消耗。本文旨在比较认知时间序列预测器和数学时间序列预测器在准确性方面的表现。结果是基于对来自M3-Competition的几个时间序列的认知模型和数学模型的预测因子的比较。从结果可以看出,认知模型至少和ARIMA模型的预测一样准确。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信