Facile Preparation of Bimetallic MOF-derived Supported Tungstophosphoric Acid Composites for Biodiesel Production

IF 1.4 4区 工程技术 Q3 ENGINEERING, CHEMICAL
Qiuyun Zhang, Linmin Luo, Jiaxin Jin, Yaping Wu, Yutao Zhang
{"title":"Facile Preparation of Bimetallic MOF-derived Supported Tungstophosphoric Acid Composites for Biodiesel Production","authors":"Qiuyun Zhang, Linmin Luo, Jiaxin Jin, Yaping Wu, Yutao Zhang","doi":"10.3311/ppch.21975","DOIUrl":null,"url":null,"abstract":"In this work, the novel TPA@C-NiZr-MOF catalyst is synthesized by the impregnation of tungstophosphoric acid (TPA) on the NiZr-based metal-organic framework (NiZr-MOF) followed by calcination up to 300 °C. The as-prepared catalyst materials were structurally, morphologically, and texturally characterized by XRD, FTIR, temperature programmed desorption of NH3 ( TPD-NH3 ), N2 physisorption, SEM, TEM, and XPS. The prepared catalyst can be used as an efficient heterogeneous catalyst for biodiesel production from oleic acid (OA) with methanol. The results indicated that, in comparison to TPA@NiZr-MOF, the TPA@C-NiZr-MOF catalyst calcined at 300 °C exhibits excellent catalytic performance probably owing to the synergistic effect between TPA and metal oxide skeletons, high acidity, as well as larger surface area and pore size. Additionally, the TPA@C-NiZr-MOF catalyst can be reused in up to six cycles with an acceptable conversion. This study showed that the bimetallic MOF-derived composite materials can be used as an alternative potential heterogeneous catalyst toward biorefinery applications.","PeriodicalId":19922,"journal":{"name":"Periodica Polytechnica Chemical Engineering","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2023-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Periodica Polytechnica Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3311/ppch.21975","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 1

Abstract

In this work, the novel TPA@C-NiZr-MOF catalyst is synthesized by the impregnation of tungstophosphoric acid (TPA) on the NiZr-based metal-organic framework (NiZr-MOF) followed by calcination up to 300 °C. The as-prepared catalyst materials were structurally, morphologically, and texturally characterized by XRD, FTIR, temperature programmed desorption of NH3 ( TPD-NH3 ), N2 physisorption, SEM, TEM, and XPS. The prepared catalyst can be used as an efficient heterogeneous catalyst for biodiesel production from oleic acid (OA) with methanol. The results indicated that, in comparison to TPA@NiZr-MOF, the TPA@C-NiZr-MOF catalyst calcined at 300 °C exhibits excellent catalytic performance probably owing to the synergistic effect between TPA and metal oxide skeletons, high acidity, as well as larger surface area and pore size. Additionally, the TPA@C-NiZr-MOF catalyst can be reused in up to six cycles with an acceptable conversion. This study showed that the bimetallic MOF-derived composite materials can be used as an alternative potential heterogeneous catalyst toward biorefinery applications.
生物柴油用mof双金属负载型钨磷酸复合材料的简易制备
在这项工作中,通过将钨磷酸(TPA)浸渍在nizr基金属有机骨架(NiZr-MOF)上,然后煅烧至300°C,合成了新型TPA@C-NiZr-MOF催化剂。采用XRD、FTIR、NH3程序升温解吸(TPD-NH3)、N2物理吸附、SEM、TEM和XPS等手段对所制备的催化剂材料进行了结构、形貌和结构表征。所制备的催化剂可作为油酸甲醇制备生物柴油的高效多相催化剂。结果表明,与TPA@NiZr-MOF相比,在300℃下煅烧的TPA@C-NiZr-MOF催化剂表现出优异的催化性能,这可能是由于TPA与金属氧化物骨架之间的协同作用、高酸度以及更大的表面积和孔径。此外,TPA@C-NiZr-MOF催化剂可重复使用6次,转化率可接受。该研究表明,mof衍生的双金属复合材料可以作为一种潜在的非均相催化剂用于生物炼制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.10
自引率
7.70%
发文量
44
审稿时长
>12 weeks
期刊介绍: The main scope of the journal is to publish original research articles in the wide field of chemical engineering including environmental and bioengineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信