Complete \({\boldsymbol{SE(3)}}\) Invariants for a Comeagre Set of \({\boldsymbol{C^3}}\) Compact Orientable Surfaces in \(\mathbb{R}^{\boldsymbol{3}}\)

IF 1.6 2区 数学 Q2 MATHEMATICS, APPLIED
Yair Hayut, D. Lehavi
{"title":"Complete \\({\\boldsymbol{SE(3)}}\\) Invariants for a Comeagre Set of \\({\\boldsymbol{C^3}}\\) Compact Orientable Surfaces in \\(\\mathbb{R}^{\\boldsymbol{3}}\\)","authors":"Yair Hayut, D. Lehavi","doi":"10.1137/21M1445776","DOIUrl":null,"url":null,"abstract":"We introduce invariants for compact $C^1$-orientable surfaces (with boundary) in $\\mathbb{R}^3$ up to rigid transformations. Our invariants are certain degree four polynomials in the moments of the delta function of the surface. We give an effective and numerically stable inversion algorithm for retrieving the surface from the invariants, which works on a comeagre subset of $C^3$-surfaces.","PeriodicalId":48489,"journal":{"name":"SIAM Journal on Applied Algebra and Geometry","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2021-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Applied Algebra and Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/21M1445776","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

We introduce invariants for compact $C^1$-orientable surfaces (with boundary) in $\mathbb{R}^3$ up to rigid transformations. Our invariants are certain degree four polynomials in the moments of the delta function of the surface. We give an effective and numerically stable inversion algorithm for retrieving the surface from the invariants, which works on a comeagre subset of $C^3$-surfaces.
中\({\boldsymbol{C^3}}\)紧可定向曲面的合集的完全\({\boldsymbol{SE(3)}}\)不变量 \(\mathbb{R}^{\boldsymbol{3}}\)
我们引入$\mathbb{R}^3$中紧$C^1$可定向曲面(带边界)到刚性变换的不变量。我们的不变量是曲面的函数矩的四阶多项式。我们给出了一种有效且数值稳定的反演算法,用于从不变量中检索曲面,该算法适用于$C^3$-曲面的comeagre子集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.20
自引率
0.00%
发文量
19
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信