Digital chip architecture for the emulation of a biology-oriented neural network

S. Prange, H. Klar
{"title":"Digital chip architecture for the emulation of a biology-oriented neural network","authors":"S. Prange, H. Klar","doi":"10.1109/MWSCAS.1991.251997","DOIUrl":null,"url":null,"abstract":"The circuit design and chip architecture for an emulator for an exemplary biology-oriented neural network are presented. This emulator is able to emulate 16 fully interconnected neurons of the Marburg type. It is cascadable to larger fully interconnected networks and multilayer networks with or without feedback. It is shown that chip architectures not suffering from a connection problem can be found even for complicated neural network architectures. The full interconnection and the multilayer architecture can be transformed to matrices. Neighborhood networks such as those used in lateral inhibition networks can also be transformed to a regular structure.<<ETX>>","PeriodicalId":6453,"journal":{"name":"[1991] Proceedings of the 34th Midwest Symposium on Circuits and Systems","volume":"113 1","pages":"780-783 vol.2"},"PeriodicalIF":0.0000,"publicationDate":"1991-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"[1991] Proceedings of the 34th Midwest Symposium on Circuits and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MWSCAS.1991.251997","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The circuit design and chip architecture for an emulator for an exemplary biology-oriented neural network are presented. This emulator is able to emulate 16 fully interconnected neurons of the Marburg type. It is cascadable to larger fully interconnected networks and multilayer networks with or without feedback. It is shown that chip architectures not suffering from a connection problem can be found even for complicated neural network architectures. The full interconnection and the multilayer architecture can be transformed to matrices. Neighborhood networks such as those used in lateral inhibition networks can also be transformed to a regular structure.<>
面向生物学的神经网络仿真的数字芯片体系结构
介绍了一种典型的面向生物学的神经网络仿真器的电路设计和芯片结构。这个模拟器能够模拟16个完全相互连接的马尔堡型神经元。它可以级联到更大的完全互联网络和多层网络,有或没有反馈。结果表明,即使对于复杂的神经网络架构,也可以找到不存在连接问题的芯片架构。全互连和多层结构可以转化为矩阵。邻域网络,如侧向抑制网络,也可以转化为规则结构
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信