{"title":"Computational investigation of NREL Phase-VI rotor: Validation of test sequence-S measurements","authors":"Mujahid Shaik, B. Subramanian","doi":"10.1177/0309524X231169298","DOIUrl":null,"url":null,"abstract":"A CFD-based assessment and validation of the NREL Phase-VI Sequence-S rotor at seven wind speeds presented here. The ability of a three-dimensional, unstructured, unsteady RANS solver in successfully predicting the wind flow interactions with a rotating, twisted and tapered rotor is described. The uRANS equations were coupled with SST κ-ω turbulence model and a correlation-based Gamma-Theta transition model. The simulations were performed in ANSYS CFX using both Single Reference Frame (SRF) and Multiple Reference Frame (MRF) modelling approaches. A good agreement with measurements is observed at six of seven wind speeds when comparing the integral quantities, the spanwise and chordwise distributions. The only exception is the 10 m/s wind speed case, attributed to the onset of a massive leading edge stall around the mid-span region. It is successfully demonstrated here how uRANS-based CFD computations can be effectively employed in the study of wind turbine rotor aerodynamics.","PeriodicalId":51570,"journal":{"name":"Wind Engineering","volume":"63 1","pages":"973 - 994"},"PeriodicalIF":1.5000,"publicationDate":"2023-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wind Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/0309524X231169298","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
A CFD-based assessment and validation of the NREL Phase-VI Sequence-S rotor at seven wind speeds presented here. The ability of a three-dimensional, unstructured, unsteady RANS solver in successfully predicting the wind flow interactions with a rotating, twisted and tapered rotor is described. The uRANS equations were coupled with SST κ-ω turbulence model and a correlation-based Gamma-Theta transition model. The simulations were performed in ANSYS CFX using both Single Reference Frame (SRF) and Multiple Reference Frame (MRF) modelling approaches. A good agreement with measurements is observed at six of seven wind speeds when comparing the integral quantities, the spanwise and chordwise distributions. The only exception is the 10 m/s wind speed case, attributed to the onset of a massive leading edge stall around the mid-span region. It is successfully demonstrated here how uRANS-based CFD computations can be effectively employed in the study of wind turbine rotor aerodynamics.
期刊介绍:
Having been in continuous publication since 1977, Wind Engineering is the oldest and most authoritative English language journal devoted entirely to the technology of wind energy. Under the direction of a distinguished editor and editorial board, Wind Engineering appears bimonthly with fully refereed contributions from active figures in the field, book notices, and summaries of the more interesting papers from other sources. Papers are published in Wind Engineering on: the aerodynamics of rotors and blades; machine subsystems and components; design; test programmes; power generation and transmission; measuring and recording techniques; installations and applications; and economic, environmental and legal aspects.