Resonant excitation of very high gradient plasma wakefield accelerators by optical-period bunch trains

Pratik Manwani, N. Majernik, J. Rosenzweig
{"title":"Resonant excitation of very high gradient plasma wakefield accelerators by optical-period bunch trains","authors":"Pratik Manwani, N. Majernik, J. Rosenzweig","doi":"10.1103/PhysRevAccelBeams.24.051302","DOIUrl":null,"url":null,"abstract":"Using a periodic electron beam bunch train to resonantly excite plasma wakefields in the quasi-nonlinear (QNL) regime has distinct advantages over employing a single, higher charge bunch. Resonant excitation in the QNL regime can produce plasma electron blowout using very low emittance beams with a small charge per pulse: the local density perturbation is extremely nonlinear, achieving total rarefaction, yet the resonant response of the plasma electrons at the plasma frequency is preserved. Such a pulse train, with inter-bunch spacing equal to the plasma period, can be produced via inverse free-electron laser bunching. To achieve resonance with a laser wavelength of a few microns, a high plasma density is used, with the attendant possibility of obtaining extremely large wakefield amplitude, near 1 TV/m for FACET-II parameters. In this article, we use particle-in-cell simulations to study the plasma response, the beam modulation evolution, and the instabilities encountered, that arise when using a bunching scheme to resonantly excite waves in a dense plasma.","PeriodicalId":8436,"journal":{"name":"arXiv: Accelerator Physics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Accelerator Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/PhysRevAccelBeams.24.051302","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

Using a periodic electron beam bunch train to resonantly excite plasma wakefields in the quasi-nonlinear (QNL) regime has distinct advantages over employing a single, higher charge bunch. Resonant excitation in the QNL regime can produce plasma electron blowout using very low emittance beams with a small charge per pulse: the local density perturbation is extremely nonlinear, achieving total rarefaction, yet the resonant response of the plasma electrons at the plasma frequency is preserved. Such a pulse train, with inter-bunch spacing equal to the plasma period, can be produced via inverse free-electron laser bunching. To achieve resonance with a laser wavelength of a few microns, a high plasma density is used, with the attendant possibility of obtaining extremely large wakefield amplitude, near 1 TV/m for FACET-II parameters. In this article, we use particle-in-cell simulations to study the plasma response, the beam modulation evolution, and the instabilities encountered, that arise when using a bunching scheme to resonantly excite waves in a dense plasma.
高梯度等离子体尾流场加速器的光周期束列共振激发
在准非线性(QNL)状态下,使用周期电子束序列共振激发等离子体尾流场比使用单个高电荷束具有明显的优势。QNL体系中的共振激发可以使用极低发射度的光束和每脉冲的小电荷产生等离子体电子井喷:局部密度扰动是非常非线性的,实现了全稀薄,但等离子体电子在等离子体频率处的共振响应被保留。这种束间间距等于等离子体周期的脉冲串可以通过自由电子激光反向聚束产生。为了实现与几微米激光波长的共振,使用了高等离子体密度,从而有可能获得非常大的尾流场振幅,FACET-II参数接近1 TV/m。在这篇文章中,我们使用细胞内粒子模拟来研究等离子体的响应,光束调制演变,以及遇到的不稳定性,当使用聚束方案在致密等离子体中共振激发波时出现的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信