Supporting an Expert-centric Process of New Product Introduction With Statistical Machine Learning

IF 7.4 3区 管理学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Shima Zahmatkesh, Alessio Bernardo, E. Falzone, Edgardo Di Nicola Carena, Emanuele Della Valle
{"title":"Supporting an Expert-centric Process of New Product Introduction With Statistical Machine Learning","authors":"Shima Zahmatkesh, Alessio Bernardo, E. Falzone, Edgardo Di Nicola Carena, Emanuele Della Valle","doi":"10.52825/bis.v1i.57","DOIUrl":null,"url":null,"abstract":"Industries that sell products with short-term or seasonal life cycles must regularly introduce new products. Forecasting the demand for New Product Introduction (NPI) can be challenging due to the fluctuations of many factors such as trend, seasonality, or other external and unpredictable phenomena (e.g., COVID-19 pandemic). Traditionally, NPI is an expertcentric process. This paper presents a study on automating the forecast of NPI demands using statistical Machine Learning (namely, Gradient Boosting and XGBoost). We show how to overcome shortcomings of the traditional data preparation that underpins the manual process. Moreover, we illustrate the role of cross-validation techniques for the hyper-parameter tuning and the validation of the models. Finally, we provide empirical evidence that statistical Machine Learning can forecast NPI demand better than experts.","PeriodicalId":56020,"journal":{"name":"Business & Information Systems Engineering","volume":"4 1","pages":"187-198"},"PeriodicalIF":7.4000,"publicationDate":"2021-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Business & Information Systems Engineering","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.52825/bis.v1i.57","RegionNum":3,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Industries that sell products with short-term or seasonal life cycles must regularly introduce new products. Forecasting the demand for New Product Introduction (NPI) can be challenging due to the fluctuations of many factors such as trend, seasonality, or other external and unpredictable phenomena (e.g., COVID-19 pandemic). Traditionally, NPI is an expertcentric process. This paper presents a study on automating the forecast of NPI demands using statistical Machine Learning (namely, Gradient Boosting and XGBoost). We show how to overcome shortcomings of the traditional data preparation that underpins the manual process. Moreover, we illustrate the role of cross-validation techniques for the hyper-parameter tuning and the validation of the models. Finally, we provide empirical evidence that statistical Machine Learning can forecast NPI demand better than experts.
用统计机器学习支持以专家为中心的新产品引入过程
销售具有短期或季节性生命周期产品的行业必须定期推出新产品。由于趋势、季节性或其他外部和不可预测现象(例如COVID-19大流行)等许多因素的波动,预测新产品引入(NPI)的需求可能具有挑战性。传统上,NPI是一个以专家为中心的过程。本文提出了一项使用统计机器学习(即梯度增强和XGBoost)自动预测NPI需求的研究。我们展示了如何克服传统数据准备的缺点,这些缺点是手工过程的基础。此外,我们还说明了交叉验证技术在超参数调整和模型验证中的作用。最后,我们提供了经验证据,证明统计机器学习可以比专家更好地预测NPI需求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Business & Information Systems Engineering
Business & Information Systems Engineering Computer Science-Information Systems
CiteScore
13.60
自引率
7.60%
发文量
44
审稿时长
3 months
期刊介绍: Business & Information Systems Engineering (BISE) is a double-blind peer-reviewed journal with a primary focus on the design and utilization of information systems for social welfare. The journal aims to contribute to the understanding and advancement of information systems in ways that benefit societal well-being.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信