Eine Bestimmung der Oberflächenqualität von Fahrradinfrastruktur durch Smartphone-Beschleunigungsdaten mithilfe des k-means++-Algorithmus / Determination of the Surface Quality of the Bicycle Infrastructure by Smartphone Acceleration Data Using the k-means++ Algorithm

Stefan Kranzinger, S. Leitinger
{"title":"Eine Bestimmung der Oberflächenqualität von Fahrradinfrastruktur durch Smartphone-Beschleunigungsdaten mithilfe des k-means++-Algorithmus / Determination of the Surface Quality of the Bicycle Infrastructure by Smartphone Acceleration Data Using the k-means++ Algorithm","authors":"Stefan Kranzinger, S. Leitinger","doi":"10.14627/537707013","DOIUrl":null,"url":null,"abstract":"Providing a well-maintained cycling infrastructure has a positive impact on the comfort and safety of cycling in road traffic and creates the conditions for its acceptance as an alternative to private or public transport. This study uses data from smartphone accelerometers and a k-means++ algorithm to determine the quality of road sections. This is easy and cost-effective to apply to large-scale cycling networks and shows in a case study for the city of Salzburg that poorly passable lane sections can be well localised and subsequently maintained in a targeted manner.","PeriodicalId":36308,"journal":{"name":"AGIT- Journal fur Angewandte Geoinformatik","volume":"1 1","pages":"104-116"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AGIT- Journal fur Angewandte Geoinformatik","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14627/537707013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Providing a well-maintained cycling infrastructure has a positive impact on the comfort and safety of cycling in road traffic and creates the conditions for its acceptance as an alternative to private or public transport. This study uses data from smartphone accelerometers and a k-means++ algorithm to determine the quality of road sections. This is easy and cost-effective to apply to large-scale cycling networks and shows in a case study for the city of Salzburg that poorly passable lane sections can be well localised and subsequently maintained in a targeted manner.
通过kmean ++土制基础设施的算法(k mean ++土制数据)确定自行车基础设施表面质量
提供保养良好的自行车基础设施,对在道路交通中骑自行车的舒适性和安全性有积极的影响,并为其作为私人或公共交通工具的替代选择创造了条件。本研究使用智能手机加速度计的数据和k-means++算法来确定路段的质量。这很容易应用到大规模的自行车网络中,并且具有成本效益,并在萨尔茨堡市的一个案例研究中表明,不易通行的车道部分可以很好地本地化,随后以有针对性的方式进行维护。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
AGIT- Journal fur Angewandte Geoinformatik
AGIT- Journal fur Angewandte Geoinformatik Earth and Planetary Sciences-Computers in Earth Sciences
CiteScore
0.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信