Lin Peng, Nitin Bhatia, Andrew C. Parker, Yanhong Zhu, W. Fay
{"title":"Endogenous Vitronectin and Plasminogen Activator Inhibitor-1 Promote Neointima Formation in Murine Carotid Arteries","authors":"Lin Peng, Nitin Bhatia, Andrew C. Parker, Yanhong Zhu, W. Fay","doi":"10.1161/01.ATV.0000019360.14554.53","DOIUrl":null,"url":null,"abstract":"We examined the roles of vitronectin and plasminogen activator inhibitor-1 (PAI-1) in neointima development. Neointima formation after carotid artery ligation or chemical injury was significantly greater in wild-type mice than in vitronectin-deficient (Vn−/−) mice. Vascular smooth muscle cell (VSMC) proliferation did not differ between groups, suggesting that vitronectin promoted neointima development by enhancing VSMC migration. Neointima formation was significantly attenuated in PAI-1–deficient (PAI-1−/−) mice compared with control mice. Because intravascular fibrin may function as a provisional matrix for invading VSMCs, we examined potential mechanisms by which vitronectin and PAI-1 regulate fibrin stability and fibrin-VSMC interactions. Inhibition of activated protein C by PAI-1 was markedly attenuated in vitronectin-deficient plasma. The capacity of PAI-1 to inhibit clot lysis was significantly attenuated in vitronectin-deficient plasma, and this effect was not explained simply by the PAI-1–stabilizing properties of vitronectin. The adhesion and spreading of VSMCs were significantly greater on wild-type plasma clots and PAI-1–deficient plasma clots than on vitronectin-deficient plasma clots. We conclude that endogenous levels of vitronectin and PAI-1 enhance neointima formation in response to vascular occlusion or injury. Their effects may be mediated to a significant extent by their capacity to promote intravascular fibrin deposition and by the capacity of vitronectin to enhance VSMC-fibrin interactions.","PeriodicalId":8418,"journal":{"name":"Arteriosclerosis, Thrombosis, and Vascular Biology: Journal of the American Heart Association","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2002-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"86","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Arteriosclerosis, Thrombosis, and Vascular Biology: Journal of the American Heart Association","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1161/01.ATV.0000019360.14554.53","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 86
Abstract
We examined the roles of vitronectin and plasminogen activator inhibitor-1 (PAI-1) in neointima development. Neointima formation after carotid artery ligation or chemical injury was significantly greater in wild-type mice than in vitronectin-deficient (Vn−/−) mice. Vascular smooth muscle cell (VSMC) proliferation did not differ between groups, suggesting that vitronectin promoted neointima development by enhancing VSMC migration. Neointima formation was significantly attenuated in PAI-1–deficient (PAI-1−/−) mice compared with control mice. Because intravascular fibrin may function as a provisional matrix for invading VSMCs, we examined potential mechanisms by which vitronectin and PAI-1 regulate fibrin stability and fibrin-VSMC interactions. Inhibition of activated protein C by PAI-1 was markedly attenuated in vitronectin-deficient plasma. The capacity of PAI-1 to inhibit clot lysis was significantly attenuated in vitronectin-deficient plasma, and this effect was not explained simply by the PAI-1–stabilizing properties of vitronectin. The adhesion and spreading of VSMCs were significantly greater on wild-type plasma clots and PAI-1–deficient plasma clots than on vitronectin-deficient plasma clots. We conclude that endogenous levels of vitronectin and PAI-1 enhance neointima formation in response to vascular occlusion or injury. Their effects may be mediated to a significant extent by their capacity to promote intravascular fibrin deposition and by the capacity of vitronectin to enhance VSMC-fibrin interactions.