Single Image Reflection Suppression

Nikolaos Arvanitopoulos, R. Achanta, S. Süsstrunk
{"title":"Single Image Reflection Suppression","authors":"Nikolaos Arvanitopoulos, R. Achanta, S. Süsstrunk","doi":"10.1109/CVPR.2017.190","DOIUrl":null,"url":null,"abstract":"Reflections are a common artifact in images taken through glass windows. Automatically removing the reflection artifacts after the picture is taken is an ill-posed problem. Attempts to solve this problem using optimization schemes therefore rely on various prior assumptions from the physical world. Instead of removing reflections from a single image, which has met with limited success so far, we propose a novel approach to suppress reflections. It is based on a Laplacian data fidelity term and an l-zero gradient sparsity term imposed on the output. With experiments on artificial and real-world images we show that our reflection suppression method performs better than the state-of-the-art reflection removal techniques.","PeriodicalId":6631,"journal":{"name":"2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)","volume":"43 1","pages":"1752-1760"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"106","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.2017.190","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 106

Abstract

Reflections are a common artifact in images taken through glass windows. Automatically removing the reflection artifacts after the picture is taken is an ill-posed problem. Attempts to solve this problem using optimization schemes therefore rely on various prior assumptions from the physical world. Instead of removing reflections from a single image, which has met with limited success so far, we propose a novel approach to suppress reflections. It is based on a Laplacian data fidelity term and an l-zero gradient sparsity term imposed on the output. With experiments on artificial and real-world images we show that our reflection suppression method performs better than the state-of-the-art reflection removal techniques.
单像反射抑制
在透过玻璃窗拍摄的图像中,反射是一种常见的人工产物。在拍照后自动去除反射伪影是一个不适定问题。因此,使用优化方案解决这个问题的尝试依赖于来自物理世界的各种先验假设。我们提出了一种新的方法来抑制反射,而不是从单个图像中去除反射,这到目前为止已经取得了有限的成功。它基于拉普拉斯数据保真度项和施加在输出上的l- 0梯度稀疏性项。通过对人工图像和真实图像的实验,我们表明我们的反射抑制方法比最先进的反射去除技术表现得更好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信