{"title":"Single Image Reflection Suppression","authors":"Nikolaos Arvanitopoulos, R. Achanta, S. Süsstrunk","doi":"10.1109/CVPR.2017.190","DOIUrl":null,"url":null,"abstract":"Reflections are a common artifact in images taken through glass windows. Automatically removing the reflection artifacts after the picture is taken is an ill-posed problem. Attempts to solve this problem using optimization schemes therefore rely on various prior assumptions from the physical world. Instead of removing reflections from a single image, which has met with limited success so far, we propose a novel approach to suppress reflections. It is based on a Laplacian data fidelity term and an l-zero gradient sparsity term imposed on the output. With experiments on artificial and real-world images we show that our reflection suppression method performs better than the state-of-the-art reflection removal techniques.","PeriodicalId":6631,"journal":{"name":"2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)","volume":"43 1","pages":"1752-1760"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"106","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.2017.190","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 106
Abstract
Reflections are a common artifact in images taken through glass windows. Automatically removing the reflection artifacts after the picture is taken is an ill-posed problem. Attempts to solve this problem using optimization schemes therefore rely on various prior assumptions from the physical world. Instead of removing reflections from a single image, which has met with limited success so far, we propose a novel approach to suppress reflections. It is based on a Laplacian data fidelity term and an l-zero gradient sparsity term imposed on the output. With experiments on artificial and real-world images we show that our reflection suppression method performs better than the state-of-the-art reflection removal techniques.