{"title":"Effect of nano TiO2 particles on the properties of carbon fiber-epoxy composites","authors":"Ahmed S. J. Al-Zubaydi, R. Salih, B. Al-dabbagh","doi":"10.1177/1477760620977502","DOIUrl":null,"url":null,"abstract":"A composite material was prepared using epoxy as a matrix, and carbon fiber (20% volume fraction) together with nano titanium dioxide (TiO2) particles in varying weight fractions (0,2,4 and 6%) as hybrid reinforcement. Mechanical tests (impact strength and wear resistance) were carried out, in addition to the study of liquid uptake behavior during immersion in chemical solutions, and inspection with scanning electron microscope imaging to reveal the microscopic details. The results showed that the addition of TiO2 have improved the mechanical properties of the composites, as the specimen reinforced with 4% TiO2 showed the highest impact strength, in addition to improved wear resistance. The scanning electron images for the specimens showed finely dispersed carbon fibers surrounded by the ultrafine TiO2 nano powder, suggesting a uniform distribution of reinforcement throughout the whole matrix for all the prepared specimens. The liquid uptake results showed that the specimen reinforced with 20% carbon fibers and 6% nano TiO2 had the highest diffusion rate, especially when immersed in hydrochloric acid. The results show that the prepared composite could be a good alternative to traditional materials whenever good wear resistance is involved, together with impact and chemical resistance, such as in anti-skid flooring applications.","PeriodicalId":20860,"journal":{"name":"Progress in Rubber Plastics and Recycling Technology","volume":"24 1","pages":"216 - 232"},"PeriodicalIF":1.1000,"publicationDate":"2020-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Rubber Plastics and Recycling Technology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1177/1477760620977502","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 8
Abstract
A composite material was prepared using epoxy as a matrix, and carbon fiber (20% volume fraction) together with nano titanium dioxide (TiO2) particles in varying weight fractions (0,2,4 and 6%) as hybrid reinforcement. Mechanical tests (impact strength and wear resistance) were carried out, in addition to the study of liquid uptake behavior during immersion in chemical solutions, and inspection with scanning electron microscope imaging to reveal the microscopic details. The results showed that the addition of TiO2 have improved the mechanical properties of the composites, as the specimen reinforced with 4% TiO2 showed the highest impact strength, in addition to improved wear resistance. The scanning electron images for the specimens showed finely dispersed carbon fibers surrounded by the ultrafine TiO2 nano powder, suggesting a uniform distribution of reinforcement throughout the whole matrix for all the prepared specimens. The liquid uptake results showed that the specimen reinforced with 20% carbon fibers and 6% nano TiO2 had the highest diffusion rate, especially when immersed in hydrochloric acid. The results show that the prepared composite could be a good alternative to traditional materials whenever good wear resistance is involved, together with impact and chemical resistance, such as in anti-skid flooring applications.
期刊介绍:
The journal aims to bridge the gap between research and development and the practical and commercial applications of polymers in a wide range of uses. Current developments and likely future trends are reviewed across key areas of the polymer industry, together with existing and potential opportunities for the innovative use of plastic and rubber products.