Computing the integer points of a polyhedron

Rui-Juan Jing, M. M. Maza
{"title":"Computing the integer points of a polyhedron","authors":"Rui-Juan Jing, M. M. Maza","doi":"10.1145/3338637.3338642","DOIUrl":null,"url":null,"abstract":"The integer points of polyhedral sets are of interest in many areas of mathematical sciences, see for instance the landmark textbooks of A. Schrijver [18] and A. Barvinok [3], as well as the compilation of articles [4]. One of these areas is the analysis and transformation of computer programs. For instance, integer programming [6] is used by P. Feautrier in the scheduling of for-loop nests [7], Barvinok's algorithm [2] for counting integer points in polyhedra is adapted by M. Köppe and S. Verdoolaege in [15] to answer questions like how many memory locations are touched by a for-loop nest. In [16], W. Pugh proposes an algorithm, called the Omega Test, for testing whether a polyhedron has integer points. In the same paper, W. Pugh shows how to use the Omega Test for performing dependence analysis [16] in for-loop nests. In [17], W. Pugh also suggests, without stating a formal algorithm, that the Omega Test could be used for quantifier elimination on Presburger formulas. This observation is a first motivation for the work presented here.","PeriodicalId":7093,"journal":{"name":"ACM Commun. Comput. Algebra","volume":"80 1","pages":"126-129"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Commun. Comput. Algebra","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3338637.3338642","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The integer points of polyhedral sets are of interest in many areas of mathematical sciences, see for instance the landmark textbooks of A. Schrijver [18] and A. Barvinok [3], as well as the compilation of articles [4]. One of these areas is the analysis and transformation of computer programs. For instance, integer programming [6] is used by P. Feautrier in the scheduling of for-loop nests [7], Barvinok's algorithm [2] for counting integer points in polyhedra is adapted by M. Köppe and S. Verdoolaege in [15] to answer questions like how many memory locations are touched by a for-loop nest. In [16], W. Pugh proposes an algorithm, called the Omega Test, for testing whether a polyhedron has integer points. In the same paper, W. Pugh shows how to use the Omega Test for performing dependence analysis [16] in for-loop nests. In [17], W. Pugh also suggests, without stating a formal algorithm, that the Omega Test could be used for quantifier elimination on Presburger formulas. This observation is a first motivation for the work presented here.
计算多面体的整数点
多面体集的整数点在数学科学的许多领域都很有趣,例如参见A. Schrijver[18]和A. Barvinok[3]的里程碑式教科书,以及文章汇编[4]。其中一个领域是计算机程序的分析和转换。例如,整数规划[6]被P. Feautrier用于For循环巢[7]的调度,Barvinok的计算多面体整数点的算法[2]被M. Köppe和S. Verdoolaege在[15]中用于回答诸如For循环巢触及多少内存位置之类的问题。1996年,W. Pugh提出了一种算法,称为Omega测试,用于测试多面体是否有整数点。在同一篇论文中,W. Pugh展示了如何使用Omega测试在for循环巢中执行依赖性分析[16]。在1986年,W. Pugh还建议,在没有说明正式算法的情况下,Omega测试可以用于消除Presburger公式上的量词。这一观察结果是本文工作的第一个动机。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信