{"title":"Computing the integer points of a polyhedron","authors":"Rui-Juan Jing, M. M. Maza","doi":"10.1145/3338637.3338642","DOIUrl":null,"url":null,"abstract":"The integer points of polyhedral sets are of interest in many areas of mathematical sciences, see for instance the landmark textbooks of A. Schrijver [18] and A. Barvinok [3], as well as the compilation of articles [4]. One of these areas is the analysis and transformation of computer programs. For instance, integer programming [6] is used by P. Feautrier in the scheduling of for-loop nests [7], Barvinok's algorithm [2] for counting integer points in polyhedra is adapted by M. Köppe and S. Verdoolaege in [15] to answer questions like how many memory locations are touched by a for-loop nest. In [16], W. Pugh proposes an algorithm, called the Omega Test, for testing whether a polyhedron has integer points. In the same paper, W. Pugh shows how to use the Omega Test for performing dependence analysis [16] in for-loop nests. In [17], W. Pugh also suggests, without stating a formal algorithm, that the Omega Test could be used for quantifier elimination on Presburger formulas. This observation is a first motivation for the work presented here.","PeriodicalId":7093,"journal":{"name":"ACM Commun. Comput. Algebra","volume":"80 1","pages":"126-129"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Commun. Comput. Algebra","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3338637.3338642","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
The integer points of polyhedral sets are of interest in many areas of mathematical sciences, see for instance the landmark textbooks of A. Schrijver [18] and A. Barvinok [3], as well as the compilation of articles [4]. One of these areas is the analysis and transformation of computer programs. For instance, integer programming [6] is used by P. Feautrier in the scheduling of for-loop nests [7], Barvinok's algorithm [2] for counting integer points in polyhedra is adapted by M. Köppe and S. Verdoolaege in [15] to answer questions like how many memory locations are touched by a for-loop nest. In [16], W. Pugh proposes an algorithm, called the Omega Test, for testing whether a polyhedron has integer points. In the same paper, W. Pugh shows how to use the Omega Test for performing dependence analysis [16] in for-loop nests. In [17], W. Pugh also suggests, without stating a formal algorithm, that the Omega Test could be used for quantifier elimination on Presburger formulas. This observation is a first motivation for the work presented here.