C. Métral, V. Daponte, A. Caselli, G. D. Marzo, G. Falquet
{"title":"ONTOLOGY-BASED RULE COMPLIANCE CHECKING FOR SUBSURFACE OBJECTS","authors":"C. Métral, V. Daponte, A. Caselli, G. D. Marzo, G. Falquet","doi":"10.5194/isprs-archives-xliv-4-w1-2020-91-2020","DOIUrl":null,"url":null,"abstract":"Abstract. This paper presents a model for representing compliance rules related to subsurface objects. Rules expressed in this model can be automatically evaluated (using SHACL or SPARQL) on existing 3D city models expressed in RDF. The main characteristics of the proposed model are (1) its expressiveness, that comes from the use of formal ontologies for representing the rules and the objects they refer to, (2) its integrative nature, given by the interconnection among the proposed ontologies and the connection of these ontologies with CityGML and IFC (in an ontological form), and (3) its multi-geometry aspect. Preliminary results allow to automatically evaluate formally expressed compliance rules for underground objects in a 3D city model, that will considerably ease the task of professionals of the field.","PeriodicalId":14757,"journal":{"name":"ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences","volume":"23 1","pages":"91-94"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5194/isprs-archives-xliv-4-w1-2020-91-2020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
Abstract. This paper presents a model for representing compliance rules related to subsurface objects. Rules expressed in this model can be automatically evaluated (using SHACL or SPARQL) on existing 3D city models expressed in RDF. The main characteristics of the proposed model are (1) its expressiveness, that comes from the use of formal ontologies for representing the rules and the objects they refer to, (2) its integrative nature, given by the interconnection among the proposed ontologies and the connection of these ontologies with CityGML and IFC (in an ontological form), and (3) its multi-geometry aspect. Preliminary results allow to automatically evaluate formally expressed compliance rules for underground objects in a 3D city model, that will considerably ease the task of professionals of the field.