Online Random Forests For Large-Scale Land-Use Classification From Polarimetric Sar Images

R. Hänsch, O. Hellwich
{"title":"Online Random Forests For Large-Scale Land-Use Classification From Polarimetric Sar Images","authors":"R. Hänsch, O. Hellwich","doi":"10.1109/IGARSS.2019.8898021","DOIUrl":null,"url":null,"abstract":"The deployment of numerous air- and space-borne remote sensing sensors as well as new data policies led to a tremendous increase of available data. While methods such as neural networks are trained by online or batch processing, i.e. keeping only parts of the data in the memory, other methods such as Random Forests require offline processing, i.e. keeping all data in the memory of the computer. The latter are therefore often trained on a small subset of a larger data set that is hoped to be representative instead of exploiting the information contained in all samples. This paper shows that Random Forests can be trained by batch processing too making their application to large data sets feasible without further constraints. The benefits of this training scheme are illustrated for the use case of land-use classification from PolSAR imagery.","PeriodicalId":13262,"journal":{"name":"IGARSS 2019 - 2019 IEEE International Geoscience and Remote Sensing Symposium","volume":"15 1","pages":"5808-5811"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IGARSS 2019 - 2019 IEEE International Geoscience and Remote Sensing Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IGARSS.2019.8898021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The deployment of numerous air- and space-borne remote sensing sensors as well as new data policies led to a tremendous increase of available data. While methods such as neural networks are trained by online or batch processing, i.e. keeping only parts of the data in the memory, other methods such as Random Forests require offline processing, i.e. keeping all data in the memory of the computer. The latter are therefore often trained on a small subset of a larger data set that is hoped to be representative instead of exploiting the information contained in all samples. This paper shows that Random Forests can be trained by batch processing too making their application to large data sets feasible without further constraints. The benefits of this training scheme are illustrated for the use case of land-use classification from PolSAR imagery.
基于极化Sar图像的大尺度土地利用在线随机森林分类
大量空中和空间遥感传感器的部署以及新的数据政策导致了可用数据的大量增加。虽然神经网络等方法是通过在线或批处理来训练的,即只在内存中保留部分数据,但随机森林等其他方法需要离线处理,即将所有数据保存在计算机的内存中。因此,后者通常是在希望具有代表性的较大数据集的一小部分上进行训练,而不是利用所有样本中包含的信息。本文表明随机森林也可以通过批处理进行训练,使其在没有进一步约束的情况下应用于大型数据集是可行的。该训练方案的好处以PolSAR图像的土地利用分类为例进行了说明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信