Interpretations of risk-sensitivity in dynamic optimization of circuit and systems

Chang-Hee Won, M. Sain, B. Spencer
{"title":"Interpretations of risk-sensitivity in dynamic optimization of circuit and systems","authors":"Chang-Hee Won, M. Sain, B. Spencer","doi":"10.1109/APCAS.1996.569251","DOIUrl":null,"url":null,"abstract":"Classical dynamical optimization over linear-quadratic-Gaussian circuits and systems can be viewed as a special case of optimization in the risk-sensitive sense. Recently, this risk-sensitive idea has been extensively studied in the literature, especially for the dynamically constrained case. The meaning and the interpretation of risk sensitivity is nevertheless not completely clear in the existing literature. The purpose of this paper is to investigate this most interesting generalization in further detail. A brief background of risk-sensitivity and existing interpretations is given. Then the characteristics of risk-sensitivity are examined, by means of series expansion, entropy, utility functions, and cost distribution functions.","PeriodicalId":20507,"journal":{"name":"Proceedings of APCCAS'96 - Asia Pacific Conference on Circuits and Systems","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"1996-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of APCCAS'96 - Asia Pacific Conference on Circuits and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APCAS.1996.569251","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Classical dynamical optimization over linear-quadratic-Gaussian circuits and systems can be viewed as a special case of optimization in the risk-sensitive sense. Recently, this risk-sensitive idea has been extensively studied in the literature, especially for the dynamically constrained case. The meaning and the interpretation of risk sensitivity is nevertheless not completely clear in the existing literature. The purpose of this paper is to investigate this most interesting generalization in further detail. A brief background of risk-sensitivity and existing interpretations is given. Then the characteristics of risk-sensitivity are examined, by means of series expansion, entropy, utility functions, and cost distribution functions.
电路和系统动态优化中风险敏感性的解释
线性二次高斯电路和系统的经典动态优化可以看作是风险敏感意义上的优化的一种特殊情况。近年来,这种风险敏感思想在文献中得到了广泛的研究,特别是在动态约束的情况下。然而,在现有文献中,风险敏感性的含义和解释并不完全清楚。本文的目的是进一步详细研究这个最有趣的概括。简要介绍了风险敏感性的背景和现有的解释。然后,通过级数展开、熵、效用函数和成本分布函数等方法分析了风险敏感性的特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信