Estimating Household Consumption Insurance

A. Chatterjee, J. Morley, Aarti Singh
{"title":"Estimating Household Consumption Insurance","authors":"A. Chatterjee, J. Morley, Aarti Singh","doi":"10.2139/ssrn.2933226","DOIUrl":null,"url":null,"abstract":"Blundell, Pistaferri, and Preston (American Economic Review, 2008, 98(5), 1887-1921) report an estimate of household consumption insurance with respect to permanent income shocks of 36%. Their estimate is imprecise and not robust to weighting scheme for GMM. We propose instead to use quasi maximum likelihood estimation (QMLE). It produces a more precise and significantly higher estimate of consumption insurance at 55%. For sub-groups by age and education, the differences between estimates are even more pronounced. Monte Carlo experiments with non-Normal shocks demonstrate that QMLE is more accurate than GMM.","PeriodicalId":23435,"journal":{"name":"UNSW Business School Research Paper Series","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"UNSW Business School Research Paper Series","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.2933226","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Blundell, Pistaferri, and Preston (American Economic Review, 2008, 98(5), 1887-1921) report an estimate of household consumption insurance with respect to permanent income shocks of 36%. Their estimate is imprecise and not robust to weighting scheme for GMM. We propose instead to use quasi maximum likelihood estimation (QMLE). It produces a more precise and significantly higher estimate of consumption insurance at 55%. For sub-groups by age and education, the differences between estimates are even more pronounced. Monte Carlo experiments with non-Normal shocks demonstrate that QMLE is more accurate than GMM.
家庭消费保险估算
Blundell, Pistaferri和Preston(《美国经济评论》,2008,98(5),1887-1921)报告了家庭消费保险对永久收入冲击的估计为36%。它们的估计精度不高,对GMM的加权方案不具有鲁棒性。我们建议使用拟最大似然估计(QMLE)。它得出了一个更精确、高得多的消费保险估计值,为55%。对于按年龄和教育程度划分的子群体,估算值之间的差异甚至更为明显。非正态冲击的蒙特卡罗实验表明,QMLE比GMM更准确。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信