Machine learning driven course recommendation system

Sara Lazarevic, Tamara Zuvela, Sofija Djordjevic, S. Sladojevic, M. Arsenovic
{"title":"Machine learning driven course recommendation system","authors":"Sara Lazarevic, Tamara Zuvela, Sofija Djordjevic, S. Sladojevic, M. Arsenovic","doi":"10.1109/INFOTEH53737.2022.9751282","DOIUrl":null,"url":null,"abstract":"This paper presents a machine learning-driven course recommendation system based on similarities between courses. The proposed system employs various data mining techniques to mentioned similarities between courses. Based on the experimental phase of this paper, Cosine metrics proved the best to calculate these parameters. The method proposed in this paper relies on rankings based on areas of study. These techniques allowed us to create an algorithm that, based on input, returns courses that satisfy various conditions. The results satisfy the demands of finding similar courses presented through cross-platform application to the students who will use it to improve their education.","PeriodicalId":6839,"journal":{"name":"2022 21st International Symposium INFOTEH-JAHORINA (INFOTEH)","volume":"222 1","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 21st International Symposium INFOTEH-JAHORINA (INFOTEH)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INFOTEH53737.2022.9751282","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

This paper presents a machine learning-driven course recommendation system based on similarities between courses. The proposed system employs various data mining techniques to mentioned similarities between courses. Based on the experimental phase of this paper, Cosine metrics proved the best to calculate these parameters. The method proposed in this paper relies on rankings based on areas of study. These techniques allowed us to create an algorithm that, based on input, returns courses that satisfy various conditions. The results satisfy the demands of finding similar courses presented through cross-platform application to the students who will use it to improve their education.
机器学习驱动的课程推荐系统
提出了一种基于课程相似性的机器学习驱动的课程推荐系统。所提出的系统采用各种数据挖掘技术来提到课程之间的相似性。基于本文的实验阶段,余弦度量被证明是计算这些参数的最佳方法。本文提出的方法依赖于基于研究领域的排名。这些技术使我们能够创建一个基于输入的算法,返回满足各种条件的课程。该结果满足了学生通过跨平台应用程序查找同类课程的需求,这些学生将使用它来提高他们的教育水平。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信