Euler and Laplace integral representations of GKZ hypergeometric functions II

Pub Date : 2019-04-01 DOI:10.3792/pjaa.96.015
Saiei-Jaeyeong Matsubara-Heo
{"title":"Euler and Laplace integral representations of GKZ hypergeometric functions II","authors":"Saiei-Jaeyeong Matsubara-Heo","doi":"10.3792/pjaa.96.015","DOIUrl":null,"url":null,"abstract":"We introduce an interpolation between Euler integral and Laplace integral: Euler-Laplace integral. We show, when parameters $d$ of the integrand is non-resonant, the $\\mathcal{D}$-module corresponding to Euler-Laplace integral is naturally isomorphic to GKZ hypergeometric system $M_A(d)$ where $A$ is a generalization of Cayley configuration. As a topological counterpart of this isomorphism, we establish an isomorphism between certain rapid decay homology group and holomorphic solutions of $M_A(d)$. Based on these foundations, we give a combinatorial method of constructing a basis of rapid decay cycles by means of regular triangulations. The remarkable feature of this construction is that this basis of cycles is explicitly related to $\\Gamma$-series solutions. In the last part, we concentrate on Euler integral representations. We determine the homology intersection matrix with respect to our basis of cycles when the regular triangulation is unimodular. As an application, we obtain closed formulae of the quadratic relations of Aomoto-Gelfand hypergeometric functions in terms of bipartite graphs.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2019-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3792/pjaa.96.015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

Abstract

We introduce an interpolation between Euler integral and Laplace integral: Euler-Laplace integral. We show, when parameters $d$ of the integrand is non-resonant, the $\mathcal{D}$-module corresponding to Euler-Laplace integral is naturally isomorphic to GKZ hypergeometric system $M_A(d)$ where $A$ is a generalization of Cayley configuration. As a topological counterpart of this isomorphism, we establish an isomorphism between certain rapid decay homology group and holomorphic solutions of $M_A(d)$. Based on these foundations, we give a combinatorial method of constructing a basis of rapid decay cycles by means of regular triangulations. The remarkable feature of this construction is that this basis of cycles is explicitly related to $\Gamma$-series solutions. In the last part, we concentrate on Euler integral representations. We determine the homology intersection matrix with respect to our basis of cycles when the regular triangulation is unimodular. As an application, we obtain closed formulae of the quadratic relations of Aomoto-Gelfand hypergeometric functions in terms of bipartite graphs.
分享
查看原文
GKZ超几何函数的欧拉和拉普拉斯积分表示II
引入欧拉积分与拉普拉斯积分之间的插值:欧拉-拉普拉斯积分。我们证明,当被积函数的参数$d$是非共振时,欧拉积分对应的$\数学{d}$-模自然同构于GKZ超几何系统$M_A(d)$,其中$A$是Cayley构形的推广。作为该同构的拓扑对应物,我们建立了$M_A(d)$全纯解与某些快速衰减同构群之间的同构关系。在此基础上,我们给出了用正则三角剖分构造快速衰减循环基的组合方法。这个构造的显著特征是,这个循环基与$\Gamma$-级数解显式相关。在最后一部分中,我们集中讨论了欧拉积分的表示。当正则三角剖分是非模时,我们确定了关于循环基的同调交矩阵。作为应用,我们得到了关于二部图的Aomoto-Gelfand超几何函数的二次关系的封闭公式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信