Le Nhat Minh, Vo Trong Nhan, Thi Thao Do, T. Huong, Lee Vien, Phung Thi Kim Hue
{"title":"Study on cancer stem cell labeling and inhibition efficiency of LV3 nanocomplex in vitro","authors":"Le Nhat Minh, Vo Trong Nhan, Thi Thao Do, T. Huong, Lee Vien, Phung Thi Kim Hue","doi":"10.31276/VJSTE.63(1).47-53","DOIUrl":null,"url":null,"abstract":"Despite abundant ongoing research efforts, cancer remains one of the most challenging diseases to treat globally. Due to the heterogeneous nature of cancer, one of the major clinical challenges is the ability of cancer to develop resistance in therapeutic development. It has been hypothesized that cancer stem cells (CSCs) are the cause of this resistance and targeting their treatment will lead to tumour regression [1]. CSCs accounts for a small percentage of tumours and can regenerate into various tumorous cell types causing the growth and expansion of malignancy. CSCs present drug-resistant abilities and overcome radiotherapy. Then, the survival of cancer stem cells after treatment allows the tumour to recur and spread throughout the body. Therefore, CSCs are considered a promising target for research and discovery of more effective anticancer drugs or therapies. CSCs are characterized by several specific surface markers. A pentaspan transmembrane glycoprotein, CD133, has been suggested to mark cancer stem cells in various tumour types. However, the accuracy of CD133 as a cancer stem cell biomarker has been highly controversial [1]. CD133 is known as prominin-1, a transmembrane glycoprotein, and is a common surface marker for CSCs, which are inside of various cancer tumours. This transmembrane CD133 glycoprotein includes an extracellular N-terminus and an intracellular C-terminus, which have been used as an efficacious typical surface antigen to detect and to isolate CSCs [2]. As recognized, traditionally nanotechnological biomedicine heighten pharmaceutical properties and reduce the systemic toxicity of chemotherapy through selectively targeting and effectively transferring anticancer drugs to tumours. Nanoparticles usually improve the therapeutic index of the chemotherapeutic drugs that are enveloped inside or combined with the nanoparticle surfaces. For Study on cancer stem cell labeling and inhibition efficiency of LV3 nanocomplex in vitro","PeriodicalId":23548,"journal":{"name":"Vietnam Journal of Science, Technology and Engineering","volume":"54 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vietnam Journal of Science, Technology and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31276/VJSTE.63(1).47-53","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Despite abundant ongoing research efforts, cancer remains one of the most challenging diseases to treat globally. Due to the heterogeneous nature of cancer, one of the major clinical challenges is the ability of cancer to develop resistance in therapeutic development. It has been hypothesized that cancer stem cells (CSCs) are the cause of this resistance and targeting their treatment will lead to tumour regression [1]. CSCs accounts for a small percentage of tumours and can regenerate into various tumorous cell types causing the growth and expansion of malignancy. CSCs present drug-resistant abilities and overcome radiotherapy. Then, the survival of cancer stem cells after treatment allows the tumour to recur and spread throughout the body. Therefore, CSCs are considered a promising target for research and discovery of more effective anticancer drugs or therapies. CSCs are characterized by several specific surface markers. A pentaspan transmembrane glycoprotein, CD133, has been suggested to mark cancer stem cells in various tumour types. However, the accuracy of CD133 as a cancer stem cell biomarker has been highly controversial [1]. CD133 is known as prominin-1, a transmembrane glycoprotein, and is a common surface marker for CSCs, which are inside of various cancer tumours. This transmembrane CD133 glycoprotein includes an extracellular N-terminus and an intracellular C-terminus, which have been used as an efficacious typical surface antigen to detect and to isolate CSCs [2]. As recognized, traditionally nanotechnological biomedicine heighten pharmaceutical properties and reduce the systemic toxicity of chemotherapy through selectively targeting and effectively transferring anticancer drugs to tumours. Nanoparticles usually improve the therapeutic index of the chemotherapeutic drugs that are enveloped inside or combined with the nanoparticle surfaces. For Study on cancer stem cell labeling and inhibition efficiency of LV3 nanocomplex in vitro