Application of stochastic programming to electricity generation planning in South Africa

ORiON Pub Date : 2019-12-20 DOI:10.5784/35-2-651
M. Bashe, M. Shuma-Iwisi, M. V. Wyk
{"title":"Application of stochastic programming to electricity generation planning in South Africa","authors":"M. Bashe, M. Shuma-Iwisi, M. V. Wyk","doi":"10.5784/35-2-651","DOIUrl":null,"url":null,"abstract":"A two-stage stochastic programming model is used to solve the electricity generation planning problem in South Africa for the period 2013 to 2050, in an attempt to minimise expected cost. Costs considered are capital and running costs. Unknown future electricity demand is the source of uncertainty represented by four scenarios with equal probabilities. The results show that the main contributors for new capacity are coal, wind, hydro and gas/diesel. The minimum costs obtained by solving the two-stage stochastic programming models range from R2 201 billion to R3 094 billion.","PeriodicalId":30587,"journal":{"name":"ORiON","volume":"220 1","pages":"88-125"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ORiON","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5784/35-2-651","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

A two-stage stochastic programming model is used to solve the electricity generation planning problem in South Africa for the period 2013 to 2050, in an attempt to minimise expected cost. Costs considered are capital and running costs. Unknown future electricity demand is the source of uncertainty represented by four scenarios with equal probabilities. The results show that the main contributors for new capacity are coal, wind, hydro and gas/diesel. The minimum costs obtained by solving the two-stage stochastic programming models range from R2 201 billion to R3 094 billion.
随机规划在南非发电规划中的应用
本文采用两阶段随机规划模型来解决南非2013年至2050年的发电规划问题,试图使预期成本最小化。考虑的成本包括资本和运营成本。未知的未来电力需求是不确定性的来源,由四种概率相等的情景表示。结果显示,新增产能的主要贡献者是煤炭、风能、水电和天然气/柴油。通过求解两阶段随机规划模型得到的最小成本在2010亿~ 0.940亿兰特之间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
11
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信