Impacts of different extracellular polysaccharides on colony formation and buoyancy of Microcystis aeruginosa

IF 0.9 4区 环境科学与生态学 Q4 LIMNOLOGY
Kai Wei, Y. Amano, M. Machida
{"title":"Impacts of different extracellular polysaccharides on colony formation and buoyancy of Microcystis aeruginosa","authors":"Kai Wei, Y. Amano, M. Machida","doi":"10.1051/limn/2020026","DOIUrl":null,"url":null,"abstract":"On the surface of Microcystis cells, there is a carbohydrate called extracellular polysaccharides (EPS) playing a significant role in the colony formation of Microcystis. EPS consists of tightly cell-bound EPS (TB-EPS), and both of these substances are considered to be strongly related to the colony formation and buoyancy of Microcystis. In this study, Microcystis aeruginosa (strain: NIES-843) was used to examine the effects of EPS, TB-EPS, and divalent metal cations such as calcium and magnesium on the buoyancy and colony formation of M. aeruginosa NIES-843. Under various light conditions, the addition of TB-EPS into the culture medium induced M. aeruginosa NIES-843 to obtain high buoyancy at concentrations of Ca2+ and Mg2+ concentrations of 10 mg/L and 30 mg/L, respectively. Under the absence of light, the addition of EPS could lead M. aeruginosa to form a colony and obtain buoyancy, and the addition of TB-EPS could not significantly change the buoyancy of M. aeruginosa NIES-843. The colony size analysis showed that at the same cationic concentration, the addition of TB-EPS could induce M. aeruginosa to form the largest colony and present strong buoyancy. This study suggested that temperature and illumination are conducive to colony formation and present higher buoyancy of M. aeruginosa.","PeriodicalId":7903,"journal":{"name":"Annales De Limnologie-international Journal of Limnology","volume":"83 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales De Limnologie-international Journal of Limnology","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1051/limn/2020026","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"LIMNOLOGY","Score":null,"Total":0}
引用次数: 3

Abstract

On the surface of Microcystis cells, there is a carbohydrate called extracellular polysaccharides (EPS) playing a significant role in the colony formation of Microcystis. EPS consists of tightly cell-bound EPS (TB-EPS), and both of these substances are considered to be strongly related to the colony formation and buoyancy of Microcystis. In this study, Microcystis aeruginosa (strain: NIES-843) was used to examine the effects of EPS, TB-EPS, and divalent metal cations such as calcium and magnesium on the buoyancy and colony formation of M. aeruginosa NIES-843. Under various light conditions, the addition of TB-EPS into the culture medium induced M. aeruginosa NIES-843 to obtain high buoyancy at concentrations of Ca2+ and Mg2+ concentrations of 10 mg/L and 30 mg/L, respectively. Under the absence of light, the addition of EPS could lead M. aeruginosa to form a colony and obtain buoyancy, and the addition of TB-EPS could not significantly change the buoyancy of M. aeruginosa NIES-843. The colony size analysis showed that at the same cationic concentration, the addition of TB-EPS could induce M. aeruginosa to form the largest colony and present strong buoyancy. This study suggested that temperature and illumination are conducive to colony formation and present higher buoyancy of M. aeruginosa.
不同胞外多糖对铜绿微囊藻菌落形成和浮力的影响
微囊藻细胞表面有一种胞外多糖(extracellular polysaccharides, EPS),在微囊藻集落形成过程中起着重要作用。EPS由紧密结合细胞的EPS (TB-EPS)组成,这两种物质被认为与微囊藻的集落形成和浮力密切相关。本研究以铜绿微囊藻(菌株:NIES-843)为实验材料,研究了EPS、TB-EPS和钙、镁等二价金属阳离子对铜绿微囊藻NIES-843浮力和菌落形成的影响。在不同光照条件下,在Ca2+浓度为10 mg/L、Mg2+浓度为30 mg/L的培养基中,加入TB-EPS可诱导M. aeruginosa ies -843获得较高的浮力。在无光照条件下,添加EPS可使M. aeruginosa形成菌落并获得浮力,添加TB-EPS不能显著改变M. aeruginosa ies -843的浮力。菌落大小分析表明,在相同阳离子浓度下,TB-EPS的加入可诱导M. aeruginosa形成最大的菌落,且具有较强的浮力。研究表明,温度和光照有利于铜绿假单胞菌的菌落形成,并使其具有较高的浮力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.20
自引率
0.00%
发文量
0
审稿时长
>12 weeks
期刊介绍: Annales de Limnologie - International Journal of Limnology publishes papers on the ecology of freshwater systems, ranging from studies of aquatic organisms, physical and chemical works which relate to the biological environment, to ecological applications and frameworks for water management directives. Main topics: Ecology of freshwater systems ; biodiversity, taxonomy, distribution patterns in space and time, biology of animals and plants ; experimental and conceptual studies which integrate laboratory and/or field work on physiology, population dynamics, biogeochemistry and nutrient dynamics, management, mathematical modelling ; techniques for sampling and chemical analyses, ecological applications, procedures which provide frameworks for environmental legislation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信