{"title":"DYNAMIC CHARACTERISTICS OF MIXTURE UNIFIED GRADIENT ELASTIC NANOBEAMS","authors":"S. Faghidian, A. Tounsi","doi":"10.22190/fume220703035f","DOIUrl":null,"url":null,"abstract":"The mixture unified gradient theory of elasticity is invoked for the rigorous analysis of the dynamic characteristics of elastic nanobeams. A consistent variational framework is established and the boundary-value problem of dynamic equilibrium enriched with proper form of the extra non-standard boundary conditions is detected. As a well-established privilege of the stationary variational theorems, the constitutive laws of the resultant fields cast as differential relations. The wave dispersion response of elastic nano-sized beams is analytically addressed and the closed form solution of the phase velocity is determined. The free vibrations of the mixture unified gradient elastic beam is, furthermore, analytically studied. The dynamic characteristics of elastic nanobeams is numerically evaluated, graphically illustrated, and commented upon. The efficacy of the established augmented elasticity theory in realizing the softening and stiffening responses of nano-sized beams is evinced. New numerical benchmark is detected for dynamic analysis of elastic nanobeams. The established mixture unified gradient elasticity model provides a practical approach to tackle dynamics of nano-structures in pioneering MEMS/NEMS.","PeriodicalId":51338,"journal":{"name":"Facta Universitatis-Series Mechanical Engineering","volume":"31 1","pages":""},"PeriodicalIF":10.1000,"publicationDate":"2022-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Facta Universitatis-Series Mechanical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.22190/fume220703035f","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 12
Abstract
The mixture unified gradient theory of elasticity is invoked for the rigorous analysis of the dynamic characteristics of elastic nanobeams. A consistent variational framework is established and the boundary-value problem of dynamic equilibrium enriched with proper form of the extra non-standard boundary conditions is detected. As a well-established privilege of the stationary variational theorems, the constitutive laws of the resultant fields cast as differential relations. The wave dispersion response of elastic nano-sized beams is analytically addressed and the closed form solution of the phase velocity is determined. The free vibrations of the mixture unified gradient elastic beam is, furthermore, analytically studied. The dynamic characteristics of elastic nanobeams is numerically evaluated, graphically illustrated, and commented upon. The efficacy of the established augmented elasticity theory in realizing the softening and stiffening responses of nano-sized beams is evinced. New numerical benchmark is detected for dynamic analysis of elastic nanobeams. The established mixture unified gradient elasticity model provides a practical approach to tackle dynamics of nano-structures in pioneering MEMS/NEMS.
期刊介绍:
Facta Universitatis, Series: Mechanical Engineering (FU Mech Eng) is an open-access, peer-reviewed international journal published by the University of Niš in the Republic of Serbia. It publishes high-quality, refereed papers three times a year, encompassing original theoretical and/or practice-oriented research as well as extended versions of previously published conference papers. The journal's scope covers the entire spectrum of Mechanical Engineering. Papers undergo rigorous peer review to ensure originality, relevance, and readability, maintaining high publication standards while offering a timely, comprehensive, and balanced review process.