{"title":"Laboratory Analyses and Compositional Simulation of the Eagle Ford and Wolfcamp Shales: A Novel Shale Oil EOR Process","authors":"A. Bustin, R. Bustin, R. Downey, K. Venepalli","doi":"10.2118/209348-ms","DOIUrl":null,"url":null,"abstract":"\n Cyclic injection-flowback (huff and puff, HnP) of natural gas or carbon dioxide has been shown to improve the recovery of oil from low permeability, low porosity shale reservoirs. However, natural gas and carbon dioxide are limited in effectiveness and utility; natural gas has a high miscibility pressure and high mobility and hence potential for leak-off and inter-well communication; carbon dioxide is not readily available, is costly, and corrosive. In this study, a novel shale oil HnP EOR process, utilising a liquid solvent comprised of mixtures of propane and butane (C3 and C4), referred to as SuperEORTM (Downey et al, 2021), was evaluated for its efficacy in recovering oil compared to methane and carbon dioxide. The advantages of the propane and butane solvent are its low miscibility pressure with the produced oil, it is injected as a liquid, and is easy to separate and recycle.\n In this study, an Eagle Ford shale core with produced Eagle Ford oil and a Permian Wolfcamp shale core with produced Wolfcamp oil were investigated. PVT and minimum miscibility tests of the fluids were combined with petrophysical analysis to design laboratory tests and provide metrics for tuning a compositional model. Two Eagle Ford facies were investigated, a calcite/quartz-rich mudstone/siltstone with a porosity of up to 10% and a calcite-rich limestone with porosity ranging from 3% to 6%. At reservoir stress, the matrix permeability averages about 2E-4 md. One facies of the Wolfcamp shale was tested, which is 80% quartz, has a porosity of about 7-11%, and average matrix permeability of 9E-3 md. SuperEOR was carried out on core plugs re-saturated with produced oil for 16 days at reservoir conditions of 5000 psi at 101°C for the Eagle Ford and 79°C for the Wolfcamp. For the Eagle Ford shale, five to 6 HnP cycles using a 1:1 ratio of C3 and C4, at injection pressures of 5000 and 3000 psi, with 20 hours of soaking per cycle, yielded a recovery of 55% to 75% of the original oil in place (OOIP) for the lower porosity facies and over 80% for the higher porosity facies of the Eagle Ford. For the Wolfcamp shale, at an injection pressure of 3000 psi, 85% of the original oil in place was recovered using 1:1 ratio of C3 and C4. In comparison, the Wolfcamp shale, at similar experiment conditions and number of HnP cycles, yielded about 30% of the OOIP when methane was used as an injectant/solvent and yielded 75% of OOIP when carbon dioxide was used.\n The efficacy of the HnP process on the Eagle Ford shale at the core scale was investigated through reservoir modelling using a general equation-of-state compositional simulator and the results were compared to the laboratory data and a field scale EOR simulation on three horizontal wells using carbon dioxide, methane, and the C3:C4 solvent. The wells had a production rate of <3 bbl/day prior to shut-in and responded poorly to natural gas HnP EOR due to excessive leak-off. The HnP simulations comprise cycling 23 days of injection followed by 30 days of production for 17 years. The recovery utilising methane is 45%, carbon dioxide 72%, and 90% with the C3:C4 solvent for the field simulation, which are generally similar to the laboratory tests and the core simulation.","PeriodicalId":10935,"journal":{"name":"Day 1 Mon, April 25, 2022","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 1 Mon, April 25, 2022","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/209348-ms","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Cyclic injection-flowback (huff and puff, HnP) of natural gas or carbon dioxide has been shown to improve the recovery of oil from low permeability, low porosity shale reservoirs. However, natural gas and carbon dioxide are limited in effectiveness and utility; natural gas has a high miscibility pressure and high mobility and hence potential for leak-off and inter-well communication; carbon dioxide is not readily available, is costly, and corrosive. In this study, a novel shale oil HnP EOR process, utilising a liquid solvent comprised of mixtures of propane and butane (C3 and C4), referred to as SuperEORTM (Downey et al, 2021), was evaluated for its efficacy in recovering oil compared to methane and carbon dioxide. The advantages of the propane and butane solvent are its low miscibility pressure with the produced oil, it is injected as a liquid, and is easy to separate and recycle.
In this study, an Eagle Ford shale core with produced Eagle Ford oil and a Permian Wolfcamp shale core with produced Wolfcamp oil were investigated. PVT and minimum miscibility tests of the fluids were combined with petrophysical analysis to design laboratory tests and provide metrics for tuning a compositional model. Two Eagle Ford facies were investigated, a calcite/quartz-rich mudstone/siltstone with a porosity of up to 10% and a calcite-rich limestone with porosity ranging from 3% to 6%. At reservoir stress, the matrix permeability averages about 2E-4 md. One facies of the Wolfcamp shale was tested, which is 80% quartz, has a porosity of about 7-11%, and average matrix permeability of 9E-3 md. SuperEOR was carried out on core plugs re-saturated with produced oil for 16 days at reservoir conditions of 5000 psi at 101°C for the Eagle Ford and 79°C for the Wolfcamp. For the Eagle Ford shale, five to 6 HnP cycles using a 1:1 ratio of C3 and C4, at injection pressures of 5000 and 3000 psi, with 20 hours of soaking per cycle, yielded a recovery of 55% to 75% of the original oil in place (OOIP) for the lower porosity facies and over 80% for the higher porosity facies of the Eagle Ford. For the Wolfcamp shale, at an injection pressure of 3000 psi, 85% of the original oil in place was recovered using 1:1 ratio of C3 and C4. In comparison, the Wolfcamp shale, at similar experiment conditions and number of HnP cycles, yielded about 30% of the OOIP when methane was used as an injectant/solvent and yielded 75% of OOIP when carbon dioxide was used.
The efficacy of the HnP process on the Eagle Ford shale at the core scale was investigated through reservoir modelling using a general equation-of-state compositional simulator and the results were compared to the laboratory data and a field scale EOR simulation on three horizontal wells using carbon dioxide, methane, and the C3:C4 solvent. The wells had a production rate of <3 bbl/day prior to shut-in and responded poorly to natural gas HnP EOR due to excessive leak-off. The HnP simulations comprise cycling 23 days of injection followed by 30 days of production for 17 years. The recovery utilising methane is 45%, carbon dioxide 72%, and 90% with the C3:C4 solvent for the field simulation, which are generally similar to the laboratory tests and the core simulation.