H. Reikvam, A. Hemsing, M. Hernandez-Valladares, E. Birkeland
{"title":"Proteomic approaches for untangling pharmacological targets in acute myelogenous leukemia","authors":"H. Reikvam, A. Hemsing, M. Hernandez-Valladares, E. Birkeland","doi":"10.1080/14789450.2022.2067530","DOIUrl":null,"url":null,"abstract":"Acute myelogenous leukemia (AML) is a highly malignant disease of the blood and bone marrow [1]. A block in differentiation in normal hematopoiesis leads to accumulation of immature cells that compromise normal bone marrow function, resulting in severe bone marrow failure [1]. The disease has a highly malignant and aggressive course, and without treatment, the disease will usually be fatal within weeks to months. In contrast to breakthroughs in treating other cancers, the progress of therapy in AML has been slow overall, although new drugs have recently entered the field [2]. Furthermore, AML represents a various disease spectrum, reflected by a myriad of cytogenetic abnormalities and genetic mutations. Although well recognized and highly predictive, they do not fully capture the degree of heterogeneities manifested clinically. Disease heterogeneity resulting from variability in leukemic cell maturation state, a large diversity of genetic aberrations among patients, and the existence of multiple disease clones within a single patient have been extensively characterized. However, despite the extensive adoption of genomic approaches in cancer research, it is widely recognized that genomics alone is insufficient to provide an accurate picture of all cellular changes and dynamic states. In contrast, mass spectrometry (MS)-based proteomics has the potential to untangle the intracellular specter of intracellular proteins and hence complement limitations of genomic approaches, advancing the discovery of a potential therapeutic and druggable protein for improving personalized treatments in AML.","PeriodicalId":50463,"journal":{"name":"Expert Review of Proteomics","volume":"1 1","pages":"73 - 76"},"PeriodicalIF":3.8000,"publicationDate":"2022-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Expert Review of Proteomics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/14789450.2022.2067530","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Acute myelogenous leukemia (AML) is a highly malignant disease of the blood and bone marrow [1]. A block in differentiation in normal hematopoiesis leads to accumulation of immature cells that compromise normal bone marrow function, resulting in severe bone marrow failure [1]. The disease has a highly malignant and aggressive course, and without treatment, the disease will usually be fatal within weeks to months. In contrast to breakthroughs in treating other cancers, the progress of therapy in AML has been slow overall, although new drugs have recently entered the field [2]. Furthermore, AML represents a various disease spectrum, reflected by a myriad of cytogenetic abnormalities and genetic mutations. Although well recognized and highly predictive, they do not fully capture the degree of heterogeneities manifested clinically. Disease heterogeneity resulting from variability in leukemic cell maturation state, a large diversity of genetic aberrations among patients, and the existence of multiple disease clones within a single patient have been extensively characterized. However, despite the extensive adoption of genomic approaches in cancer research, it is widely recognized that genomics alone is insufficient to provide an accurate picture of all cellular changes and dynamic states. In contrast, mass spectrometry (MS)-based proteomics has the potential to untangle the intracellular specter of intracellular proteins and hence complement limitations of genomic approaches, advancing the discovery of a potential therapeutic and druggable protein for improving personalized treatments in AML.
期刊介绍:
Expert Review of Proteomics (ISSN 1478-9450) seeks to collect together technologies, methods and discoveries from the field of proteomics to advance scientific understanding of the many varied roles protein expression plays in human health and disease.
The journal coverage includes, but is not limited to, overviews of specific technological advances in the development of protein arrays, interaction maps, data archives and biological assays, performance of new technologies and prospects for future drug discovery.
The journal adopts the unique Expert Review article format, offering a complete overview of current thinking in a key technology area, research or clinical practice, augmented by the following sections:
Expert Opinion - a personal view on the most effective or promising strategies and a clear perspective of future prospects within a realistic timescale
Article highlights - an executive summary cutting to the author''s most critical points.