Knot homologies in monopole and instanton theories via sutures

Pub Date : 2019-01-20 DOI:10.4310/jsg.2021.v19.n6.a2
Zhenkun Li
{"title":"Knot homologies in monopole and instanton theories via sutures","authors":"Zhenkun Li","doi":"10.4310/jsg.2021.v19.n6.a2","DOIUrl":null,"url":null,"abstract":"In this paper we construct possible candidates for the minus versions of monopole and instanton knot Floer homologies. For a null-homologous knot $K\\subset Y$ and a base point $p\\in K$, we can associate the minus versions, $\\underline{\\rm KHM}^-(Y,K,p)$ and $\\underline{\\rm KHI}^-(Y,K,p)$, to the triple $(Y,K,p)$. We prove that a Seifert surface of $K$ induces a $\\mathbb{Z}$-grading, and there is an $U$-map on the minus versions, which is of degree $-1$. We also prove other basic properties of them. If $K\\subset Y$ is not null-homologous but represents a torsion class, then we can also construct the corresponding minus versions for $(Y,K,p)$. We also proved a surgery-type formula relating the minus versions of a knot $K$ with those of the dual knot, when performing a Dehn surgery of large enough slope along $K$. The techniques developed in this paper can also be applied to compute the sutured monopole and instanton Floer homologies of any sutured solid tori.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2019-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/jsg.2021.v19.n6.a2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

Abstract

In this paper we construct possible candidates for the minus versions of monopole and instanton knot Floer homologies. For a null-homologous knot $K\subset Y$ and a base point $p\in K$, we can associate the minus versions, $\underline{\rm KHM}^-(Y,K,p)$ and $\underline{\rm KHI}^-(Y,K,p)$, to the triple $(Y,K,p)$. We prove that a Seifert surface of $K$ induces a $\mathbb{Z}$-grading, and there is an $U$-map on the minus versions, which is of degree $-1$. We also prove other basic properties of them. If $K\subset Y$ is not null-homologous but represents a torsion class, then we can also construct the corresponding minus versions for $(Y,K,p)$. We also proved a surgery-type formula relating the minus versions of a knot $K$ with those of the dual knot, when performing a Dehn surgery of large enough slope along $K$. The techniques developed in this paper can also be applied to compute the sutured monopole and instanton Floer homologies of any sutured solid tori.
分享
查看原文
单极子和瞬子理论中的结同源
本文构造了单极子和瞬子结花同调的负版本的可能候选者。对于一个零同源结点K\子集Y$和K$中的基点p $,我们可以将$\underline{\rm KHI}^-(Y,K,p)$和$\underline{\rm KHI}^-(Y,K,p)$与三元组$(Y,K,p)$联系起来。我们证明了$K$的Seifert曲面推导出$\mathbb{Z}$-分级,并且在负的版本上存在一个$U$-映射,其阶为$-1$。我们还证明了它们的其他基本性质。如果$K\子集Y$不是零同源的,而是一个扭转类,那么我们也可以构造$(Y,K,p)$的相应的负版本。我们还证明了一个手术型公式,当沿着K$进行足够大斜率的Dehn手术时,将一个结$K$的负版本与双结$的负版本联系起来。本文所开发的技术也可用于计算任何缝合实体环面的缝合单极子和瞬子花同源性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信