{"title":"Automated Design of Continuously-Adaptive Control: The \"Super-Controller\" Strategy for Reconfigurable Systems","authors":"J. Elder, R. Barron","doi":"10.23919/ACC.1988.4790094","DOIUrl":null,"url":null,"abstract":"Modern military aircraft undergo rapid and often unpredictable changes in dynamics during flight. Though curent control system design techniques may be adequate to handle the range of flight conditions and maneuvers demanded, further compensation for system malfunctions and/or battle damage has heretofore been extremely difficult - unless one has accepted significant performance penalties at each operating point to obtain a very conservative control solution that can deal with awide range of potential impairments. What is needed is a method for developing simple, robust, high-performance control systems that vary in real time with operating and fault condition changes in the system being controlled; that is, that \"reconfigure\" rapidly to face rapidly changing conditions. The \"super-controller\" strategy, outlined here, shows promise of meeting this need. This paper describes the super-controller design technique and preliminary simulation results based upon single and multiple simultaneous effector impairments of a control reconfigurable combat aircraft (CRCA).","PeriodicalId":6395,"journal":{"name":"1988 American Control Conference","volume":"40 1","pages":"2225-2231"},"PeriodicalIF":0.0000,"publicationDate":"1988-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"1988 American Control Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ACC.1988.4790094","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13
Abstract
Modern military aircraft undergo rapid and often unpredictable changes in dynamics during flight. Though curent control system design techniques may be adequate to handle the range of flight conditions and maneuvers demanded, further compensation for system malfunctions and/or battle damage has heretofore been extremely difficult - unless one has accepted significant performance penalties at each operating point to obtain a very conservative control solution that can deal with awide range of potential impairments. What is needed is a method for developing simple, robust, high-performance control systems that vary in real time with operating and fault condition changes in the system being controlled; that is, that "reconfigure" rapidly to face rapidly changing conditions. The "super-controller" strategy, outlined here, shows promise of meeting this need. This paper describes the super-controller design technique and preliminary simulation results based upon single and multiple simultaneous effector impairments of a control reconfigurable combat aircraft (CRCA).