{"title":"Zariski Density of Points with Maximal Arithmetic Degree","authors":"K. Sano, Takahiro Shibata","doi":"10.1307/mmj/20205960","DOIUrl":null,"url":null,"abstract":"Given a dominant rational self-map on a projective variety over a number field, we can define the arithmetic degree at a rational point. It is known that the arithmetic degree at any point is less than or equal to the first dynamical degree. In this article, we show that there are densely many $\\overline{\\mathbb Q}$-rational points with maximal arithmetic degree (i.e. whose arithmetic degree is equal to the first dynamical degree) for self-morphisms on projective varieties. For unirational varieties and abelian varieties, we show that there are densely many rational points with maximal arithmetic degree over a sufficiently large number field. We also give a generalization of a result of Kawaguchi and Silverman in the appendix.","PeriodicalId":49820,"journal":{"name":"Michigan Mathematical Journal","volume":"15 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2020-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Michigan Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1307/mmj/20205960","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 4
Abstract
Given a dominant rational self-map on a projective variety over a number field, we can define the arithmetic degree at a rational point. It is known that the arithmetic degree at any point is less than or equal to the first dynamical degree. In this article, we show that there are densely many $\overline{\mathbb Q}$-rational points with maximal arithmetic degree (i.e. whose arithmetic degree is equal to the first dynamical degree) for self-morphisms on projective varieties. For unirational varieties and abelian varieties, we show that there are densely many rational points with maximal arithmetic degree over a sufficiently large number field. We also give a generalization of a result of Kawaguchi and Silverman in the appendix.
期刊介绍:
The Michigan Mathematical Journal is available electronically through the Project Euclid web site. The electronic version is available free to all paid subscribers. The Journal must receive from institutional subscribers a list of Internet Protocol Addresses in order for members of their institutions to have access to the online version of the Journal.