U0126, an Inhibitor of MEK1/2, Increases Tumor Necrosis Factor-α-Induced Apoptosis, but not Interleukin-6 Induced Apoptosis in C-28/I2 Human Chondrocytes.
C. Malemud, A. Lewis, Meredith A Wylie, Evan C. Meszaros, Yelenna Skomorovska-Prokvolit, S. Mesiano
{"title":"U0126, an Inhibitor of MEK1/2, Increases Tumor Necrosis Factor-α-Induced Apoptosis, but not Interleukin-6 Induced Apoptosis in C-28/I2 Human Chondrocytes.","authors":"C. Malemud, A. Lewis, Meredith A Wylie, Evan C. Meszaros, Yelenna Skomorovska-Prokvolit, S. Mesiano","doi":"10.21767/2471-8153.100004","DOIUrl":null,"url":null,"abstract":"BACKGROUND Activation of the SAPK/MAPK signaling pathway by pro-inflammatory cytokines is known to induce apoptosis in cultured articular chondrocytes. C-28/I2, an immortalized human juvenile chondrocyte cell line was employed to determine the extent to which recombinant human (rh) forms of the pro-inflammatory cytokines, tumor necrosis factor-α (rhTNF-α,), interleukin-6 (rhIL-6) and oncostatin M (rhOSM) induced apoptosis. METHODS The induction of apoptosis in the presence or absence of these cytokines was measured by the DAPI/TUNEL assay, by whether or not pro-caspase-3 was activated and by the extent to which poly-ADP-ribose polymerase (PARP) was degraded. FINDINGS Only rhTNF-α, and rhIL-6 significantly increased apoptosis in C-28/I2 chondrocytes, although rhOSM exhibited a strong trend (p=0.067) towards increasing the frequency of apoptotic chondrocytes. The number of apoptotic C28/I2 chondrocytes was significantly increased (p=1.3 × 10-5) by the combination of rhTNF-α and U0126 (10 μM) compared to rhTNF-α alone. However apoptosis was not further increased by combining rhIL-6 with U0126. The LI-COR® western blot system showed that U0126 (10 μM) inhibited the phosphorylation of extracellular signal-regulated kinase-2 (p-ERK2) by phorbol myristate acetate-treated immortalized myometrial cells, U0126 (10 μM) did not alter total U-ERK2. Western blot analysis also revealed that the increased frequency of apoptotic C-28/I2 chondrocytes induced by rhTNF-α and rhOSM, but not rhIL-6, was associated with PARP degradation. However, none of the cytokines resulted in pro-caspase-3 activation. CONCLUSION These results showed that rhTNF-α and rhIL-6 were strong inducers of apoptosis in the immortalized C-28/I2 human chondrocyte cell line. They also suggested that inhibiting ERK2 phosphorylation via U0126-mediated inhibition of MEK1/2 activity, increased rhTNF-α-induced C-28/I2 chondrocyte apoptosis.","PeriodicalId":91305,"journal":{"name":"Journal of autoimmune disorders","volume":"15 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2015-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of autoimmune disorders","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21767/2471-8153.100004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11
Abstract
BACKGROUND Activation of the SAPK/MAPK signaling pathway by pro-inflammatory cytokines is known to induce apoptosis in cultured articular chondrocytes. C-28/I2, an immortalized human juvenile chondrocyte cell line was employed to determine the extent to which recombinant human (rh) forms of the pro-inflammatory cytokines, tumor necrosis factor-α (rhTNF-α,), interleukin-6 (rhIL-6) and oncostatin M (rhOSM) induced apoptosis. METHODS The induction of apoptosis in the presence or absence of these cytokines was measured by the DAPI/TUNEL assay, by whether or not pro-caspase-3 was activated and by the extent to which poly-ADP-ribose polymerase (PARP) was degraded. FINDINGS Only rhTNF-α, and rhIL-6 significantly increased apoptosis in C-28/I2 chondrocytes, although rhOSM exhibited a strong trend (p=0.067) towards increasing the frequency of apoptotic chondrocytes. The number of apoptotic C28/I2 chondrocytes was significantly increased (p=1.3 × 10-5) by the combination of rhTNF-α and U0126 (10 μM) compared to rhTNF-α alone. However apoptosis was not further increased by combining rhIL-6 with U0126. The LI-COR® western blot system showed that U0126 (10 μM) inhibited the phosphorylation of extracellular signal-regulated kinase-2 (p-ERK2) by phorbol myristate acetate-treated immortalized myometrial cells, U0126 (10 μM) did not alter total U-ERK2. Western blot analysis also revealed that the increased frequency of apoptotic C-28/I2 chondrocytes induced by rhTNF-α and rhOSM, but not rhIL-6, was associated with PARP degradation. However, none of the cytokines resulted in pro-caspase-3 activation. CONCLUSION These results showed that rhTNF-α and rhIL-6 were strong inducers of apoptosis in the immortalized C-28/I2 human chondrocyte cell line. They also suggested that inhibiting ERK2 phosphorylation via U0126-mediated inhibition of MEK1/2 activity, increased rhTNF-α-induced C-28/I2 chondrocyte apoptosis.