M. Solzi, F. Cugini, S. Scaravonati, G. Galli, D. Pontiroli, G. Attolini, T. Besagni, G. Delgado, V. Sagredo
{"title":"Magnetic Li–M (M = Ni, Ni0.8Cu0.2, Cr) layered oxides nanoparticles for Li-ion batteries electrodes","authors":"M. Solzi, F. Cugini, S. Scaravonati, G. Galli, D. Pontiroli, G. Attolini, T. Besagni, G. Delgado, V. Sagredo","doi":"10.1088/2515-7639/accfbf","DOIUrl":null,"url":null,"abstract":"Nanoparticles of Li–Ni, Li–(Ni, Cu) and Li–Cr layered oxides, with potential applications as cathode materials in lithium batteries, were prepared by solid-state reaction and sol-gel method. The combination of structural analysis and magnetic characterization allowed the clear identification of the phases present in the synthesized nanoparticles. The main component of Li–Ni oxide nanoparticles is the electrochemically active and ferrimagnetic phase Li1−z Ni1+z O2, whereas those of Li–Cr oxide are the antiferromagnetic phases LiCrO2 and Cr2O3. A small substitution of Cu for Ni in Li–Ni oxide determines the formation of nanoparticles in which the main phase is the antiferromagnetic phase Li1−z Ni1+z O2. Operation tests in lithium batteries and post-mortem analysis, aimed at assessing the potential of metal oxide nanoparticles as cathode materials, were performed on all samples.","PeriodicalId":16520,"journal":{"name":"Journal of Nonlinear Optical Physics & Materials","volume":"102 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2023-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nonlinear Optical Physics & Materials","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/2515-7639/accfbf","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
Abstract
Nanoparticles of Li–Ni, Li–(Ni, Cu) and Li–Cr layered oxides, with potential applications as cathode materials in lithium batteries, were prepared by solid-state reaction and sol-gel method. The combination of structural analysis and magnetic characterization allowed the clear identification of the phases present in the synthesized nanoparticles. The main component of Li–Ni oxide nanoparticles is the electrochemically active and ferrimagnetic phase Li1−z Ni1+z O2, whereas those of Li–Cr oxide are the antiferromagnetic phases LiCrO2 and Cr2O3. A small substitution of Cu for Ni in Li–Ni oxide determines the formation of nanoparticles in which the main phase is the antiferromagnetic phase Li1−z Ni1+z O2. Operation tests in lithium batteries and post-mortem analysis, aimed at assessing the potential of metal oxide nanoparticles as cathode materials, were performed on all samples.
期刊介绍:
This journal is devoted to the rapidly advancing research and development in the field of nonlinear interactions of light with matter. Topics of interest include, but are not limited to, nonlinear optical materials, metamaterials and plasmonics, nano-photonic structures, stimulated scatterings, harmonic generations, wave mixing, real time holography, guided waves and solitons, bistabilities, instabilities and nonlinear dynamics, and their applications in laser and coherent lightwave amplification, guiding, switching, modulation, communication and information processing. Original papers, comprehensive reviews and rapid communications reporting original theories and observations are sought for in these and related areas. This journal will also publish proceedings of important international meetings and workshops. It is intended for graduate students, scientists and researchers in academic, industrial and government research institutions.