Private-kNN: Practical Differential Privacy for Computer Vision

Yuqing Zhu, Xiang Yu, Manmohan Chandraker, Yu-Xiang Wang
{"title":"Private-kNN: Practical Differential Privacy for Computer Vision","authors":"Yuqing Zhu, Xiang Yu, Manmohan Chandraker, Yu-Xiang Wang","doi":"10.1109/CVPR42600.2020.01187","DOIUrl":null,"url":null,"abstract":"With increasing ethical and legal concerns on privacy for deep models in visual recognition, differential privacy has emerged as a mechanism to disguise membership of sensitive data in training datasets. Recent methods like Private Aggregation of Teacher Ensembles (PATE) leverage a large ensemble of teacher models trained on disjoint subsets of private data, to transfer knowledge to a student model with privacy guarantees. However, labeled vision data is often expensive and datasets, when split into many disjoint training sets, lead to significantly sub-optimal accuracy and thus hardly sustain good privacy bounds. We propose a practically data-efficient scheme based on private release of k-nearest neighbor (kNN) queries, which altogether avoids splitting the training dataset. Our approach allows the use of privacy-amplification by subsampling and iterative refinement of the kNN feature embedding. We rigorously analyze the theoretical properties of our method and demonstrate strong experimental performance on practical computer vision datasets for face attribute recognition and person reidentification. In particular, we achieve comparable or better accuracy than PATE while reducing more than 90% of the privacy loss, thereby providing the “most practical method to-date” for private deep learning in computer vision.","PeriodicalId":6715,"journal":{"name":"2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)","volume":"88 1","pages":"11851-11859"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"55","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR42600.2020.01187","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 55

Abstract

With increasing ethical and legal concerns on privacy for deep models in visual recognition, differential privacy has emerged as a mechanism to disguise membership of sensitive data in training datasets. Recent methods like Private Aggregation of Teacher Ensembles (PATE) leverage a large ensemble of teacher models trained on disjoint subsets of private data, to transfer knowledge to a student model with privacy guarantees. However, labeled vision data is often expensive and datasets, when split into many disjoint training sets, lead to significantly sub-optimal accuracy and thus hardly sustain good privacy bounds. We propose a practically data-efficient scheme based on private release of k-nearest neighbor (kNN) queries, which altogether avoids splitting the training dataset. Our approach allows the use of privacy-amplification by subsampling and iterative refinement of the kNN feature embedding. We rigorously analyze the theoretical properties of our method and demonstrate strong experimental performance on practical computer vision datasets for face attribute recognition and person reidentification. In particular, we achieve comparable or better accuracy than PATE while reducing more than 90% of the privacy loss, thereby providing the “most practical method to-date” for private deep learning in computer vision.
Private-kNN:计算机视觉的实用差分隐私
随着对视觉识别中深度模型隐私的伦理和法律关注的增加,差分隐私已经成为一种掩饰训练数据集中敏感数据的隶属关系的机制。最近的方法,如教师集合的私有聚合(PATE),利用在私有数据的不相交子集上训练的大量教师模型集合,将知识转移到具有隐私保证的学生模型中。然而,标记的视觉数据通常是昂贵的,当数据集被分成许多不相交的训练集时,会导致signiï非常不理想的准确性,因此很难维持良好的隐私界限。我们提出了一种基于k-最近邻(kNN)查询的私有发布的切实可行的data-efï - client方案,它完全避免了训练数据集的分裂。我们的方法允许通过子采样和迭代reï对kNN特征嵌入使用privacy-ampliï - cation。我们严格地分析了我们的方法的理论性质,并在实际的计算机视觉数据集上展示了强大的实验性能,用于人脸属性识别和人reidentiï识别。特别是,我们实现了与PATE相当或更好的准确率,同时减少了90%以上的隐私损失,从而为计算机视觉中的私人深度学习提供了“迄今为止最实用的方法”。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信