Prediction for the Warpage of the Plastic Sheet Based on Artificial Neural Network

Qiubo Qian, Chuan-yang Wang
{"title":"Prediction for the Warpage of the Plastic Sheet Based on Artificial Neural Network","authors":"Qiubo Qian, Chuan-yang Wang","doi":"10.1109/ICECE.2010.369","DOIUrl":null,"url":null,"abstract":"Moldflow is used to simulate the warpage of the plastic sheet under different molding process parameters. A 4-12-1 BP neural network model is established according to the simulated warpage data. Testing samples are used to verify the accuracy of the BP model. The warpage under the other molding process parameters are predicted by applying the established BP model. The results show that the combination of neural network and Moldflow can not only improve the molding process parameters effectively but also optimize the quality of the products.","PeriodicalId":6419,"journal":{"name":"2010 International Conference on Electrical and Control Engineering","volume":"74 1","pages":"1496-1498"},"PeriodicalIF":0.0000,"publicationDate":"2010-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 International Conference on Electrical and Control Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICECE.2010.369","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Moldflow is used to simulate the warpage of the plastic sheet under different molding process parameters. A 4-12-1 BP neural network model is established according to the simulated warpage data. Testing samples are used to verify the accuracy of the BP model. The warpage under the other molding process parameters are predicted by applying the established BP model. The results show that the combination of neural network and Moldflow can not only improve the molding process parameters effectively but also optimize the quality of the products.
基于人工神经网络的塑料板翘曲预测
利用Moldflow对不同成型工艺参数下塑料板的翘曲变形进行了模拟。根据模拟翘曲数据,建立4-12-1 BP神经网络模型。用测试样本验证了BP模型的准确性。应用所建立的BP模型对其他成型工艺参数下的翘曲量进行了预测。结果表明,神经网络与Moldflow相结合不仅可以有效地改善成型工艺参数,而且可以优化产品质量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信