Reflection trees of graphs as boundaries of Coxeter groups

Jacek 'Swikatkowski
{"title":"Reflection trees of graphs as boundaries of Coxeter groups","authors":"Jacek 'Swikatkowski","doi":"10.2140/AGT.2021.21.351","DOIUrl":null,"url":null,"abstract":"To any finite graph $X$ (viewed as a topological space) we assosiate some explicit compact metric space ${\\cal X}^r(X)$ which we call {\\it the reflection tree of graphs $X$}. This space is of topological dimension $\\le1$ and its connected components are locally connected. We show that if $X$ is appropriately triangulated (as a simplicial graph $\\Gamma$ for which $X$ is the geometric realization) then the visual boundary $\\partial_\\infty(W,S)$ of the right angled Coxeter system $(W,S)$ with the nerve isomorphic to $\\Gamma$ is homeomorphic to ${\\cal X}^r(X)$. For each $X$, this yields in particular many word hyperbolic groups with Gromov boundary homeomorphic to the space ${\\cal X}^r(X)$.","PeriodicalId":8427,"journal":{"name":"arXiv: Group Theory","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Group Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/AGT.2021.21.351","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

To any finite graph $X$ (viewed as a topological space) we assosiate some explicit compact metric space ${\cal X}^r(X)$ which we call {\it the reflection tree of graphs $X$}. This space is of topological dimension $\le1$ and its connected components are locally connected. We show that if $X$ is appropriately triangulated (as a simplicial graph $\Gamma$ for which $X$ is the geometric realization) then the visual boundary $\partial_\infty(W,S)$ of the right angled Coxeter system $(W,S)$ with the nerve isomorphic to $\Gamma$ is homeomorphic to ${\cal X}^r(X)$. For each $X$, this yields in particular many word hyperbolic groups with Gromov boundary homeomorphic to the space ${\cal X}^r(X)$.
图的反射树作为Coxeter群的边界
对于任何有限图$X$(视为拓扑空间),我们关联一些显式紧度量空间${\cal X}^r(X)$,我们称之为{\it图的反射树$X$}。该空间的拓扑维度为$\le1$,其连接的组件是局部连接的。我们证明,如果$X$被适当三角化(作为一个简单图$\Gamma$,其中$X$是几何实现),那么直角Coxeter系统$(W,S)$与$\Gamma$神经同构的视觉边界$\partial_\infty(W,S)$与${\cal X}^r(X)$是同态的。对于每个$X$,这产生了许多与空间${\cal X}^r(X)$同胚的Gromov边界的词双曲群。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信