{"title":"Notes on exceptional signed graphs","authors":"Z. Stanić","doi":"10.26493/1855-3974.1933.2DF","DOIUrl":null,"url":null,"abstract":"A connected signed graph is called exceptional if it has a representation in the root system E 8 , but has not in any D k . In this study we obtain some properties of these signed graphs, mostly expressed in terms of those that are maximal with a fixed number of eigenvalues distinct from −2 . As an application, we characterize exceptional signed graphs with exactly 2 eigenvalues. In some particular cases, we prove the (non-)existence of such signed graphs.","PeriodicalId":8402,"journal":{"name":"Ars Math. Contemp.","volume":"29 1","pages":"105-115"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ars Math. Contemp.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26493/1855-3974.1933.2DF","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6
Abstract
A connected signed graph is called exceptional if it has a representation in the root system E 8 , but has not in any D k . In this study we obtain some properties of these signed graphs, mostly expressed in terms of those that are maximal with a fixed number of eigenvalues distinct from −2 . As an application, we characterize exceptional signed graphs with exactly 2 eigenvalues. In some particular cases, we prove the (non-)existence of such signed graphs.