{"title":"Sharp interface limit of a Stokes/Cahn–Hilliard system. Part I: Convergence result","authors":"H. Abels, A. Marquardt","doi":"10.4171/ifb/457","DOIUrl":null,"url":null,"abstract":"We consider the sharp interface limit of a coupled Stokes/Cahn\\textendash Hilliard system in a two dimensional, bounded and smooth domain, i.e., we consider the limiting behavior of solutions when a parameter $\\epsilon>0$ corresponding to the thickness of the diffuse interface tends to zero. We show that for sufficiently short times the solutions to the Stokes/Cahn\\textendash Hilliard system converge to solutions of a sharp interface model, where the evolution of the interface is governed by a Mullins\\textendash Sekerka system with an additional convection term coupled to a two\\textendash phase stationary Stokes system with the Young-Laplace law for the jump of an extra contribution to the stress tensor, representing capillary stresses. We prove the convergence result by estimating the difference between the exact and an approximate solutions. To this end we make use of modifications of spectral estimates shown by X.\\ Chen for the linearized Cahn-Hilliard operator. The treatment of the coupling terms requires careful estimates, the use of the refinements of the latter spectral estimate and a suitable structure of the approximate solutions, which will be constructed in the second part of this contribution.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2020-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/ifb/457","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 7
Abstract
We consider the sharp interface limit of a coupled Stokes/Cahn\textendash Hilliard system in a two dimensional, bounded and smooth domain, i.e., we consider the limiting behavior of solutions when a parameter $\epsilon>0$ corresponding to the thickness of the diffuse interface tends to zero. We show that for sufficiently short times the solutions to the Stokes/Cahn\textendash Hilliard system converge to solutions of a sharp interface model, where the evolution of the interface is governed by a Mullins\textendash Sekerka system with an additional convection term coupled to a two\textendash phase stationary Stokes system with the Young-Laplace law for the jump of an extra contribution to the stress tensor, representing capillary stresses. We prove the convergence result by estimating the difference between the exact and an approximate solutions. To this end we make use of modifications of spectral estimates shown by X.\ Chen for the linearized Cahn-Hilliard operator. The treatment of the coupling terms requires careful estimates, the use of the refinements of the latter spectral estimate and a suitable structure of the approximate solutions, which will be constructed in the second part of this contribution.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.