Sharp interface limit of a Stokes/Cahn–Hilliard system. Part I: Convergence result

IF 1.2 4区 数学 Q1 MATHEMATICS
H. Abels, A. Marquardt
{"title":"Sharp interface limit of a Stokes/Cahn–Hilliard system. Part I: Convergence result","authors":"H. Abels, A. Marquardt","doi":"10.4171/ifb/457","DOIUrl":null,"url":null,"abstract":"We consider the sharp interface limit of a coupled Stokes/Cahn\\textendash Hilliard system in a two dimensional, bounded and smooth domain, i.e., we consider the limiting behavior of solutions when a parameter $\\epsilon>0$ corresponding to the thickness of the diffuse interface tends to zero. We show that for sufficiently short times the solutions to the Stokes/Cahn\\textendash Hilliard system converge to solutions of a sharp interface model, where the evolution of the interface is governed by a Mullins\\textendash Sekerka system with an additional convection term coupled to a two\\textendash phase stationary Stokes system with the Young-Laplace law for the jump of an extra contribution to the stress tensor, representing capillary stresses. We prove the convergence result by estimating the difference between the exact and an approximate solutions. To this end we make use of modifications of spectral estimates shown by X.\\ Chen for the linearized Cahn-Hilliard operator. The treatment of the coupling terms requires careful estimates, the use of the refinements of the latter spectral estimate and a suitable structure of the approximate solutions, which will be constructed in the second part of this contribution.","PeriodicalId":13863,"journal":{"name":"Interfaces and Free Boundaries","volume":"251 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2020-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Interfaces and Free Boundaries","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/ifb/457","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 7

Abstract

We consider the sharp interface limit of a coupled Stokes/Cahn\textendash Hilliard system in a two dimensional, bounded and smooth domain, i.e., we consider the limiting behavior of solutions when a parameter $\epsilon>0$ corresponding to the thickness of the diffuse interface tends to zero. We show that for sufficiently short times the solutions to the Stokes/Cahn\textendash Hilliard system converge to solutions of a sharp interface model, where the evolution of the interface is governed by a Mullins\textendash Sekerka system with an additional convection term coupled to a two\textendash phase stationary Stokes system with the Young-Laplace law for the jump of an extra contribution to the stress tensor, representing capillary stresses. We prove the convergence result by estimating the difference between the exact and an approximate solutions. To this end we make use of modifications of spectral estimates shown by X.\ Chen for the linearized Cahn-Hilliard operator. The treatment of the coupling terms requires careful estimates, the use of the refinements of the latter spectral estimate and a suitable structure of the approximate solutions, which will be constructed in the second part of this contribution.
Stokes/ Cahn-Hilliard系统的锐界面极限。第一部分:收敛结果
考虑二维有界光滑域上耦合Stokes/Cahn\textendash - Hilliard系统的尖锐界面极限,即考虑当参数$\epsilon>0$对应的扩散界面厚度趋于零时解的极限行为。我们证明,在足够短的时间内,Stokes/Cahn\textendash Hilliard系统的解收敛于一个尖界面模型的解,其中界面的演化由一个带有附加对流项的Mullins\textendash Sekerka系统控制,该系统与一个具有Young-Laplace定律的两个\textendash相位平稳Stokes系统耦合,该系统具有对应力张量的额外贡献的跳跃,代表毛细管应力。我们通过估计精确解和近似解的差值来证明收敛结果。为此,我们利用X.\ Chen对线性化Cahn-Hilliard算子的谱估计的修正。耦合项的处理需要仔细估计,使用后一种谱估计的改进和近似解的适当结构,这将在本贡献的第二部分中构造。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
17
审稿时长
>12 weeks
期刊介绍: Interfaces and Free Boundaries is dedicated to the mathematical modelling, analysis and computation of interfaces and free boundary problems in all areas where such phenomena are pertinent. The journal aims to be a forum where mathematical analysis, partial differential equations, modelling, scientific computing and the various applications which involve mathematical modelling meet. Submissions should, ideally, emphasize the combination of theory and application.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信