Analysis of Zigzag and Rhombic Benzenoid Systems via Irregularity Indices

IF 0.7 Q2 MATHEMATICS
M. Awais, Zulfiqar Ahmed, W. Khalid, E. Bonyah
{"title":"Analysis of Zigzag and Rhombic Benzenoid Systems via Irregularity Indices","authors":"M. Awais, Zulfiqar Ahmed, W. Khalid, E. Bonyah","doi":"10.1155/2023/4833683","DOIUrl":null,"url":null,"abstract":"<jats:p>Topological indices are numerical quantities associated with the molecular graph of a chemical structure. These indices are used to predict various properties of chemical structures. Imbalance-based analysis is an advanced technique used for chemical compounds with irregular characteristics. The molecular graphs of zigzag benzenoid systems <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M1\">\n <mfenced open=\"(\" close=\")\" separators=\"|\">\n <mrow>\n <msub>\n <mrow>\n <mi>Z</mi>\n </mrow>\n <mrow>\n <mi>p</mi>\n </mrow>\n </msub>\n </mrow>\n </mfenced>\n </math>\n </jats:inline-formula> and rhombic benzenoid systems <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M2\">\n <mfenced open=\"(\" close=\")\" separators=\"|\">\n <mrow>\n <msub>\n <mrow>\n <mi>R</mi>\n </mrow>\n <mrow>\n <mi>p</mi>\n </mrow>\n </msub>\n </mrow>\n </mfenced>\n </math>\n </jats:inline-formula> are inherently irregular. Therefore, applying the imbalance technique to these molecular structures plays an important role in predicting different properties. In this paper, we calculate sixteen irregularity indices for both <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M3\">\n <msub>\n <mrow>\n <mi>Z</mi>\n </mrow>\n <mrow>\n <mi>p</mi>\n </mrow>\n </msub>\n </math>\n </jats:inline-formula> and <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M4\">\n <msub>\n <mrow>\n <mi>R</mi>\n </mrow>\n <mrow>\n <mi>p</mi>\n </mrow>\n </msub>\n </math>\n </jats:inline-formula> systems. By examining these indices, we aim to provide insights into the properties of these structures and ultimately contribute to a deeper understanding of the field.</jats:p>","PeriodicalId":43667,"journal":{"name":"Muenster Journal of Mathematics","volume":"79 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Muenster Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2023/4833683","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

Abstract

Topological indices are numerical quantities associated with the molecular graph of a chemical structure. These indices are used to predict various properties of chemical structures. Imbalance-based analysis is an advanced technique used for chemical compounds with irregular characteristics. The molecular graphs of zigzag benzenoid systems Z p and rhombic benzenoid systems R p are inherently irregular. Therefore, applying the imbalance technique to these molecular structures plays an important role in predicting different properties. In this paper, we calculate sixteen irregularity indices for both Z p and R p systems. By examining these indices, we aim to provide insights into the properties of these structures and ultimately contribute to a deeper understanding of the field.
用不规则性指标分析之字形和菱形苯系
拓扑指数是与化学结构的分子图有关的数值。这些指标被用来预测化学结构的各种性质。基于不平衡的分析是一种用于分析具有不规则特征的化合物的先进技术。之字形苯系zp和菱形苯系的分子图系统R p本质上是不规则的。因此,将不平衡技术应用于这些分子结构对预测不同性质具有重要作用。在本文中,我们计算了zp和R的16个不规则指数p 系统。通过研究这些指标,我们的目标是深入了解这些结构的性质,并最终有助于更深入地了解该领域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信