Deblocking Joint Photographic Experts Group Compressed Images via Self-learning Sparse Representation

Q3 Engineering
S. A. Amiri, H. Hassanpour
{"title":"Deblocking Joint Photographic Experts Group Compressed Images via Self-learning Sparse Representation","authors":"S. A. Amiri, H. Hassanpour","doi":"10.5829/idosi.ije.2016.29.12c.07","DOIUrl":null,"url":null,"abstract":"JPEG is one of the most widely used image compression method, but it causes annoying blocking artifacts at low bit-rates. Sparse representation is an efficient technique which can solve many inverse problems in image processing applications such as denoising and deblocking. In this paper, a post-processing method is proposed for reducing JPEG blocking effects via sparse representation. In this method, a dictionary is learned via the single input blocky image using K-SVD. There is no need for any prior knowledge about the blocking artifacts. Experimental results on various images demonstrate that the proposed post-processing method can efficiently alleviate the blocking effects at low bit-rates and outperforms the existing methods.","PeriodicalId":14066,"journal":{"name":"International Journal of Engineering - Transactions C: Aspects","volume":"127 1","pages":"1684-1690"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Engineering - Transactions C: Aspects","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5829/idosi.ije.2016.29.12c.07","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 1

Abstract

JPEG is one of the most widely used image compression method, but it causes annoying blocking artifacts at low bit-rates. Sparse representation is an efficient technique which can solve many inverse problems in image processing applications such as denoising and deblocking. In this paper, a post-processing method is proposed for reducing JPEG blocking effects via sparse representation. In this method, a dictionary is learned via the single input blocky image using K-SVD. There is no need for any prior knowledge about the blocking artifacts. Experimental results on various images demonstrate that the proposed post-processing method can efficiently alleviate the blocking effects at low bit-rates and outperforms the existing methods.
基于自学习稀疏表示的联合摄影专家组压缩图像块化
JPEG是使用最广泛的图像压缩方法之一,但它在低比特率下会产生令人讨厌的块伪影。稀疏表示是一种有效的图像处理技术,可以解决图像去噪、去块等诸多逆问题。本文提出了一种利用稀疏表示减少JPEG块效应的后处理方法。在该方法中,使用K-SVD方法通过单个输入的块图像学习字典。不需要任何关于阻塞工件的先验知识。在各种图像上的实验结果表明,该后处理方法可以有效地缓解低比特率下的块效应,优于现有的后处理方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.10
自引率
0.00%
发文量
29
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信