Pattern discrimination software for neonatal cardiovascular risk estimation

R. Hermida, J. R. Fernández, D. Ayala, F. Aguado
{"title":"Pattern discrimination software for neonatal cardiovascular risk estimation","authors":"R. Hermida, J. R. Fernández, D. Ayala, F. Aguado","doi":"10.1109/IEMBS.1992.5761567","DOIUrl":null,"url":null,"abstract":"Parametric characteristics obtained by least-squares fitting and descriptive statistics of within-a-day variability in blood pressure and heart rate for 150 neonates are here used for classification according to a cardiovascular risk score by the use of an all-subsets variable selection technique for discriminant analysis, specifically designed for biomedical applications. Results provide a set of classification criteria for further use in neonatal risk assessment.1","PeriodicalId":6457,"journal":{"name":"1992 14th Annual International Conference of the IEEE Engineering in Medicine and Biology Society","volume":"127 1","pages":"2518-2519"},"PeriodicalIF":0.0000,"publicationDate":"1992-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"1992 14th Annual International Conference of the IEEE Engineering in Medicine and Biology Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEMBS.1992.5761567","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Parametric characteristics obtained by least-squares fitting and descriptive statistics of within-a-day variability in blood pressure and heart rate for 150 neonates are here used for classification according to a cardiovascular risk score by the use of an all-subsets variable selection technique for discriminant analysis, specifically designed for biomedical applications. Results provide a set of classification criteria for further use in neonatal risk assessment.1
模式识别软件用于新生儿心血管风险评估
通过最小二乘拟合获得的参数特征和对150名新生儿血压和心率在一天内变异性的描述性统计,本文使用全子集变量选择技术进行判别分析,根据心血管风险评分进行分类,专为生物医学应用而设计。结果提供了一套分类标准,以进一步用于新生儿风险评估
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信